共 50 条
Existence and nonexistence of global solutions of some nonlocal degenerate parabolic equations
被引:30
|作者:
Deng, WB
[1
]
Li, YX
[1
]
Xie, CH
[1
]
机构:
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词:
global existence-nonexistence;
degenerate parabolic equation;
nonlocal source;
D O I:
10.1016/S0893-9659(03)80118-0
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper investigates the global existence and nonexistence of positive solutions of the nonlinear degenerate parabolic equation u(t) = f(u)(Deltau + a integral(Omega) u dx) with a homogeneous Dirichlet boundary condition. It is proved that there exists no global positive solution if and only if integral(infinity) 1/(sf (s)) ds < infinity and integral(Omega) rho(x) dx > 1/a, where rho(x) is the unique positive solution of the linear elliptic problem -Deltarho(x) 1, x is an element of n; rho(x) = 0, x is an element of thetaOmega. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:803 / 808
页数:6
相关论文