Existence and nonexistence of global solutions of some nonlocal degenerate parabolic equations

被引:30
|
作者
Deng, WB [1 ]
Li, YX [1 ]
Xie, CH [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
global existence-nonexistence; degenerate parabolic equation; nonlocal source;
D O I
10.1016/S0893-9659(03)80118-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the global existence and nonexistence of positive solutions of the nonlinear degenerate parabolic equation u(t) = f(u)(Deltau + a integral(Omega) u dx) with a homogeneous Dirichlet boundary condition. It is proved that there exists no global positive solution if and only if integral(infinity) 1/(sf (s)) ds < infinity and integral(Omega) rho(x) dx > 1/a, where rho(x) is the unique positive solution of the linear elliptic problem -Deltarho(x) 1, x is an element of n; rho(x) = 0, x is an element of thetaOmega. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:803 / 808
页数:6
相关论文
共 50 条