Existence and nonexistence of global solutions of some non-local degenerate parabolic systems

被引:0
|
作者
Deng, WB [1 ]
Li, YX [1 ]
Xie, CH [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
global existence-nonexistence; degenerate parabolic system; non-local;
D O I
10.1090/S0002-9939-02-06866-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes a new criterion for global existence and nonexistence of positive solutions of the non-local degenerate parabolic system ut = v(p) (Deltau+a integral(Omega) vdx), vt = u(q) (Deltav+b integral(Omega) udx), x is an element of Omega, t > 0, with homogeneous Dirichlet boundary conditions, where Omega subset of R-N is a bounded domain with a smooth boundary partial derivativeOmega and p, q, a, b are positive constants. For all initial data, it is proved that there exists a global positive solution iff integral(Omega)phi(x)dx less than or equal to 1/rootab, where phi(x) is the unique positive solution of the linear elliptic problem -Deltaphi(x)=1, x is an element of Omega; phi(x)=0, x is an element of partial derivativeOmega.
引用
收藏
页码:1573 / 1582
页数:10
相关论文
共 50 条