Thermal conductivity of dry anatase and rutile nano-powders and ethylene and propylene glycol-based TiO2 nanofluids

被引:82
|
作者
Cabaleiro, D. [1 ]
Nimo, J. [1 ]
Pastoriza-Gallego, M. J. [1 ]
Pineiro, M. M. [1 ]
Legido, J. L. [1 ]
Lugo, L. [1 ]
机构
[1] Univ Vigo, Fac Ciencias, Dept Fis Aplicada, E-36310 Vigo, Spain
来源
关键词
TiO2; nanofluid; Anatase; Rutile; Ethylene glycol; Propylene glycol; Thermal conductivity; HEAT-TRANSFER; THERMOPHYSICAL PROPERTIES; ABSOLUTE MEASUREMENTS; PARTICLE-SIZE; NANOPARTICLES; DIFFUSIVITY; VISCOSITY; DENSITY;
D O I
10.1016/j.jct.2014.12.001
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal conductivity behaviour was studied for two TiO2 nano-powders with different nanocrystalline structures, viz. anatase and rutile, as well as nanofluids formulated as dispersions of these two oxides up to volume concentrations of 8.5% in two different glycols, viz. ethylene and propylene glycol. Because it is known that titanium dioxide can exhibit three different crystalline structures, the dry nano-powders were analysed using X-ray Diffraction to determine the nanocrystalline structure of the powders. Two different techniques were employed in the thermal conductivity study of the materials. Dry nanopowders, with and without compaction, were analysed at room temperature by using a device based on the guarded heat flow meter method. Nanofluids and base fluids were studied with a transient hot wire technique over the temperature range from (283.15 to 343.15) K. The base fluid propylene glycol was measured by using both techniques in order to verify the good agreement between both sets of results. The experimental measurements presented in this work were compared with other literature data for TiO2 nanofluids in order to understand the thermal conductivity enhancement as a function of nanoparticle concentration. Different theoretical or semi-theoretical approaches such as Maxwell, Penas et al., Yu-Choi were evaluated comparing with our experimental values. A parallel model was used to predict thermal conductivities employing experimental values for dry nanopowder. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 50 条
  • [41] Determination of the lattice thermal conductivity of the TiO2 polymorphs rutile and anatase by molecular dynamics simulation
    Momenzadeh, Leila
    Moghtaderi, Behdad
    Belova, Irina, V
    Murch, Graeme E.
    COMPUTATIONAL CONDENSED MATTER, 2018, 17
  • [42] Dehydration and dehydrogenation of ethylene glycol on rutile TiO2(110)
    Li, Zhenjun
    Kay, Bruce D.
    Dohnalek, Zdenek
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (29) : 12180 - 12186
  • [43] Effective thermal conductivity and rheological characteristics of ethylene glycol-based nanofluids with single-walled carbon nanohorn inclusions
    Selvam, C.
    Harish, Sivasankaran
    Lal, D. Mohan
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2017, 25 (02) : 86 - 93
  • [44] Co3O4 ethylene glycol-based nanofluids: Thermal conductivity, viscosity and high pressure density
    Mariano, Alejandra
    Jose Pastoriza-Gallego, Maria
    Lugo, Luis
    Mussari, Lelia
    Pineiro, Manuel M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 85 : 54 - 60
  • [45] Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles
    Yu, Wei
    Xie, Huaqing
    Chen, Lifei
    Li, Yang
    POWDER TECHNOLOGY, 2010, 197 (03) : 218 - 221
  • [46] Study on the Dispersion Technics of the mixed Nano-Powders TiO2 and ZnO
    Xu Ying qi
    PROCEEDINGS OF THE FIBER SOCIETY 2009 SPRING CONFERENCE, VOLS I AND II, 2009, : 890 - 892
  • [47] Study of the structural, morphological and electric characteristics of TiO2 nano-powders
    Graca, M. P. F.
    Silva, C. C.
    Costa, L. C.
    Valente, M. A.
    INTERNATIONAL JOURNAL OF NANOELECTRONICS AND MATERIALS, 2010, 3 (02): : 99 - 111
  • [48] Trapping-Induced Enhancement of Photocatalytic Activity on Brookite TiO2 Powders: Comparison with Anatase and Rutile TiO2 Powders
    Vequizo, Junie Jhon M.
    Matsunaga, Hironori
    Ishiku, Tatsuya
    Karnimura, Sunao
    Ohno, Teruhisa
    Yamakata, Akira
    ACS CATALYSIS, 2017, 7 (04): : 2644 - 2651
  • [49] An experimental approach to predict the effect of ethylene and propylene glycol-based hybrid nanofluids in a heat exchanger setup
    Venugopal, Inbanaathan Papla
    Balasubramanian, Dhinesh
    Gnanavel, Jawahar Raj Sivanandha
    Chinnasamy, Arunagirinathan
    Ponvelan, Dhinesh Ram Subbiah
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, : 12767 - 12790
  • [50] Electrical conductivity of titanium dioxide ethylene glycol-based nanofluids: Impact of nanoparticles phase and concentration
    Fal, Jacek
    Sobczak, Jolanta
    Stagraczynski, Ryszard
    Estelle, Patrice
    Zyla, Gawel
    POWDER TECHNOLOGY, 2022, 404