Embedded eigenvalues for perturbed periodic Jacobi operators using a geometric approach

被引:3
|
作者
Judge, E. [1 ]
Naboko, S. [2 ]
Wood, I. [1 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury, Kent, England
[2] St Petersburg State Univ, Inst Phys, Dept Math & Phys, St Petersburg, Russia
基金
英国工程与自然科学研究理事会; 俄罗斯科学基金会;
关键词
Jacobi matrices; periodic operators; embedded eigenvalues; spectral theory; Wigner-von Neumann; SCHRODINGER-OPERATORS; BOUND-STATES; MATRICES; SPECTRUM; HETEROSTRUCTURES; SUBORDINACY; POTENTIALS; CONTINUUM;
D O I
10.1080/10236198.2018.1468890
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of embedding eigenvalues into the essential spectrum of periodic Jacobi operators, using an oscillating, decreasing potential. To do this we employ a geometric method, previously used to embed eigenvalues into the essential spectrum of the discrete Schrodinger operator. For periodic Jacobi operators we relax the rational dependence conditions on the values of the quasi-momenta from this previous work. We then explore conditions that permit not just the existence of infinitely many subordinate solutions to the formal spectral equation but also the embedding of infinitely many eigenvalues.
引用
收藏
页码:1247 / 1272
页数:26
相关论文
共 50 条