We consider the problem of embedding eigenvalues into the essential spectrum of periodic Jacobi operators, using an oscillating, decreasing potential. To do this we employ a geometric method, previously used to embed eigenvalues into the essential spectrum of the discrete Schrodinger operator. For periodic Jacobi operators we relax the rational dependence conditions on the values of the quasi-momenta from this previous work. We then explore conditions that permit not just the existence of infinitely many subordinate solutions to the formal spectral equation but also the embedding of infinitely many eigenvalues.
机构:
Univ Kent, Sch Math Stat & Actuarial Sci, Sibson Bldg, Canterbury CT2 7FS, Kent, EnglandUniv Kent, Sch Math Stat & Actuarial Sci, Sibson Bldg, Canterbury CT2 7FS, Kent, England
Judge, Edmund
Naboko, Sergey
论文数: 0引用数: 0
h-index: 0
机构:
St Petersburg State Univ, Inst Phys, Dept Math Phys, 1 Ulianovskaia St, St Petersburg 198504, RussiaUniv Kent, Sch Math Stat & Actuarial Sci, Sibson Bldg, Canterbury CT2 7FS, Kent, England
Naboko, Sergey
Wood, Ian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kent, Sch Math Stat & Actuarial Sci, Sibson Bldg, Canterbury CT2 7FS, Kent, EnglandUniv Kent, Sch Math Stat & Actuarial Sci, Sibson Bldg, Canterbury CT2 7FS, Kent, England
机构:
Naval Submarine Acad, Dept Basic Sci, Qingdao 266199, Peoples R ChinaNaval Submarine Acad, Dept Basic Sci, Qingdao 266199, Peoples R China
Fu, Zhengqi
Li, Xiong
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R ChinaNaval Submarine Acad, Dept Basic Sci, Qingdao 266199, Peoples R China