Momentum conserving Brownian dynamics propagator for complex soft matter fluids

被引:4
|
作者
Padding, J. T. [1 ]
Briels, W. J. [2 ]
机构
[1] Eindhoven Univ Technol, Dept Chem Engn & Chem, NL-5600 MB Eindhoven, Netherlands
[2] Univ Twente, NL-7500 AE Enschede, Netherlands
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 141卷 / 24期
关键词
STAR POLYMER SUSPENSIONS; PARTICLE DYNAMICS; SIMULATIONS; RHEOLOGY; MODEL; NETWORKS; BEHAVIOR; STATES;
D O I
10.1063/1.4904315
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a Galilean invariant, momentum conserving first order Brownian dynamics scheme for coarse-grained simulations of highly frictional soft matter systems. Friction forces are taken to be with respect to moving background material. The motion of the background material is described by locally averaged velocities in the neighborhood of the dissolved coarse coordinates. The velocity variables are updated by a momentum conserving scheme. The properties of the stochastic updates are derived through the Chapman-Kolmogorov and Fokker-Planck equations for the evolution of the probability distribution of coarse-grained position and velocity variables, by requiring the equilibrium distribution to be a stationary solution. We test our new scheme on concentrated star polymer solutions and find that the transverse current and velocity time auto-correlation functions behave as expected from hydrodynamics. In particular, the velocity auto-correlation functions display a long time tail in complete agreement with hydrodynamics. (c) 2014 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Energy-momentum conserving integration schemes for molecular dynamics
    Mark Schiebl
    Ignacio Romero
    Computational Mechanics, 2021, 67 : 915 - 935
  • [22] Energy-momentum conserving integration schemes for molecular dynamics
    Schiebl, Mark
    Romero, Ignacio
    COMPUTATIONAL MECHANICS, 2021, 67 (03) : 915 - 935
  • [23] Electrorheological fluids: smart soft matter and characteristics
    Liu, Ying Dan
    Choi, Hyoung Jin
    SOFT MATTER, 2012, 8 (48) : 11961 - 11978
  • [24] Spreading of complex fluids with a soft blade
    Krapez, Marion
    Gauthier, Anais
    Boitte, Jean-Baptiste
    Aubrun, Odile
    Joanny, Jean-Francois
    Colin, Annie
    PHYSICAL REVIEW FLUIDS, 2022, 7 (08)
  • [25] Complex order in soft matter
    Sharon C. Glotzer
    Michael Engel
    Nature, 2011, 471 : 309 - 310
  • [26] Transport dynamics of complex fluids
    Song, Sanggeun
    Park, Seong Jun
    Kim, Minjung
    Kim, Jun Soo
    Sung, Bong June
    Lee, Sangyoub
    Kim, Ji-Hyun
    Sung, Jaeyoung
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (26) : 12733 - 12742
  • [27] Interfacial dynamics in complex fluids
    Feng, James J.
    Chen, Ching-Yao
    JOURNAL OF FLUID SCIENCE AND TECHNOLOGY, 2016, 11 (04):
  • [28] Fluid dynamics, soft matter and complex systems: recent results and new methods
    Chopard, B.
    Ansumali, S.
    Patil, D. V.
    Karlin, I.
    Venkatesan, D. S.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2175):
  • [29] Anomalous Long-Ranged Influence of an Inclusion in Momentum-Conserving Active Fluids
    de Pirey, Thibaut Arnoulx
    Kafri, Yariv
    Ramaswamy, Sriram
    PHYSICAL REVIEW X, 2024, 14 (04):
  • [30] A soft collision detection algorithm for simple Brownian dynamics
    Taylor, William R.
    Katsimitsoulia, Zoe
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2010, 34 (01) : 1 - 10