Size-dependent bandgap and particle size distribution of colloidal semiconductor nanocrystals

被引:57
|
作者
Ferreira, D. L. [1 ]
Sousa, J. C. L. [2 ]
Maronesi, R. N. [1 ]
Bettini, J. [3 ]
Schiavon, M. A. [2 ]
Teixeira, A. V. N. C. [1 ]
Silva, A. G. [1 ]
机构
[1] Univ Fed Vicosa, Dept Fis, CCE, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Sao Joao Del Rei, Dept Ciencias Nat, Campus Dom Bosco, BR-36301160 Sao Joao Del Rei, MG, Brazil
[3] Ctr Nacl Pesquisa Energia & Mat, Lab Nacl Nanotecnol, BR-13083970 Campinas, SP, Brazil
来源
JOURNAL OF CHEMICAL PHYSICS | 2017年 / 147卷 / 15期
关键词
CDTE QUANTUM DOTS; ABSORBENCY SPECTRA; REDOX POTENTIALS; ENERGY-LEVELS; NANOPARTICLES; MICROCRYSTALS; CRYSTALLITES; CONFINEMENT; CLUSTERS; CDSE;
D O I
10.1063/1.4999093
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new analytical expression for the size-dependent bandgap of colloidal semiconductor nanocrystals is proposed within the framework of the finite-depth square-well effective mass approximation in order to provide a quantitative description of the quantum confinement effect. This allows one to convert optical spectroscopic data (photoluminescence spectrum and absorbance edge) into accurate estimates for the particle size distributions of colloidal systems even if the traditional effective mass model is expected to fail, which occurs typically for very small particles belonging to the so-called strong confinement limit. By applying the reported theoretical methodologies to CdTe nanocrystals synthesized through wet chemical routes, size distributions are inferred and compared directly to those obtained from atomic force microscopy and transmission electron microscopy. This analysis can be used as a complementary tool for the characterization of nanocrystal samples of many other systems such as the II-VI and III-V semiconductor materials. Published by AIP Publishing.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Size-Dependent Electron Transfer and Trapping in Strongly Luminescent Colloidal Gallium Oxide Nanocrystals
    Wang, Ting
    Radovanovic, Pavle V.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (38): : 18473 - 18478
  • [32] Size-dependent photocurrent of photodetectors with silicon nanocrystals
    Kim, Sang-Kyun
    Kim, Baek-Hyun
    Cho, Chang-Hee
    Park, Seong-Ju
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (18)
  • [33] Size-Dependent Reactivity in Hydrosilylation of Silicon Nanocrystals
    Kelly, Joel A.
    Shukaliak, Amber M.
    Fleischauer, Michael D.
    Veinot, Jonathan G. C.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (24) : 9564 - 9571
  • [34] SIZE-DEPENDENT THERMAL VIBRATIONS AND MELTING IN NANOCRYSTALS
    SHI, FG
    [J]. JOURNAL OF MATERIALS RESEARCH, 1994, 9 (05) : 1307 - 1313
  • [35] Size-dependent diffusion in an aging colloidal glass
    Strachan, DR
    Kalur, GC
    Raghavan, SR
    [J]. PHYSICAL REVIEW E, 2006, 73 (04):
  • [36] Size-Dependent Phase Stability of Silver Nanocrystals
    Yang, C. C.
    Li, S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (42): : 16400 - 16404
  • [37] Size-dependent tunneling spectroscopy of InAs nanocrystals
    Katz, D
    Millo, O
    Levi, Y
    Banin, U
    Cao, YW
    [J]. PHYSICA B, 2000, 284 : 1760 - 1761
  • [38] Size-Dependent Temperature Effects on PbSe Nanocrystals
    Dai, Quanqin
    Zhang, Yu
    Wang, Yingnan
    Hu, Michael Z.
    Zou, Bo
    Wang, Yiding
    Yu, William W.
    [J]. LANGMUIR, 2010, 26 (13) : 11435 - 11440
  • [39] Size-dependent Curie transition of Ni nanocrystals
    Lu, H. M.
    Li, P. Y.
    Huang, Y. N.
    Meng, X. K.
    Zhang, X. Y.
    Liu, Q.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 105 (02)
  • [40] The Strongest Particle: Size-Dependent Elastic Strength and Debye Temperature of PbS Nanocrystals
    Bian, Kaifu
    Bassett, William
    Wang, Zhongwu
    Hanrath, Tobias
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (21): : 3688 - 3693