BRAIN DECODING OF FMRI CONNECTIVITY GRAPHS USING DECISION TREE ENSEMBLES

被引:6
|
作者
Richiardi, Jonas [1 ,2 ]
Eryilmaz, Hamdi [3 ]
Schwartz, Sophie [3 ]
Vuilleumier, Patrik [3 ]
Van De Ville, Dimitri [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne, Med Image Proc Lab, CH-1015 Lausanne, Switzerland
[2] Univ Geneva, Med Image Proc Lab, CH-1211 Geneva, Switzerland
[3] Univ Geneva, Lab Neurol & Imaging Cognit, CH-1211 Geneva, Switzerland
基金
瑞士国家科学基金会;
关键词
fMRI; brain decoding; functional connectivity; graphs; decision tree; FUNCTIONAL CONNECTIVITY; NETWORK; CORTEX; SINGLE; MRI;
D O I
10.1109/ISBI.2010.5490194
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Functional connectivity analysis of fMRI data can reveal synchronized activity between anatomically distinct brain regions. Here, we exploit the characteristic connectivity graphs of task and resting epochs to perform classification between these conditions. Our approach is based on ensembles of decision trees, which combine powerful discriminative ability with interpretability of results. This makes it possible to extract discriminative graphs that represent a subset of the connections that distinguish best between the experimental conditions. Our experimental results also show that the method can be applied for group-level brain decoding.
引用
收藏
页码:1137 / 1140
页数:4
相关论文
共 50 条
  • [31] Interaction Detection with Bayesian Decision Tree Ensembles
    Du, Junliang
    Linero, Antonio R.
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 108 - 117
  • [32] Decision tree ensembles based on kernel features
    Ahmad, Amir
    APPLIED INTELLIGENCE, 2014, 41 (03) : 855 - 869
  • [33] Decoding brain states from fMRI data
    Janoos, Firdaus
    Machiraju, Raghu
    Morocz, Istvan A.
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2010, 77 (03) : 322 - 323
  • [34] Semi-Spatiotemporal fMRI Brain Decoding
    Kefayati, Mohammad Hadi
    Sheikhzadeh, Hamid
    Rabiee, Hamid R.
    Soltani-Farani, Ali
    2013 3RD INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING (PRNI 2013), 2013, : 182 - 185
  • [35] Probabilistic Boolean Network for inferring brain connectivity using fMRI data
    Ma, Zheng
    Wang, Z. Jane
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 457 - +
  • [36] Functional connectivity fMRI in mouse brain at 7 T using isoflurane
    Guilfoyle, David N.
    Gerum, Scott V.
    Sanchez, Jamie L.
    Balla, Andrea
    Sershen, Henry
    Javitt, Daniel C.
    Hoptman, Matthew J.
    JOURNAL OF NEUROSCIENCE METHODS, 2013, 214 (02) : 144 - 148
  • [37] Functional Brain Connectivity Using fMRI in Aging and Alzheimer’s Disease
    Emily L. Dennis
    Paul M. Thompson
    Neuropsychology Review, 2014, 24 : 49 - 62
  • [38] Functional Brain Connectivity Using fMRI in Aging and Alzheimer's Disease
    Dennis, Emily L.
    Thompson, Paul M.
    NEUROPSYCHOLOGY REVIEW, 2014, 24 (01) : 49 - 62
  • [39] Using the dual of proximity graphs for binary decision tree design
    Sánchez, JS
    Pla, F
    Herrero, MC
    ADVANCES IN PATTERN RECOGNITION, 2000, 1876 : 482 - 490
  • [40] Decoding the different states of visual attention using functional and effective connectivity features in fMRI data
    Behdad Parhizi
    Mohammad Reza Daliri
    Mehdi Behroozi
    Cognitive Neurodynamics, 2018, 12 : 157 - 170