BRAIN DECODING OF FMRI CONNECTIVITY GRAPHS USING DECISION TREE ENSEMBLES

被引:6
|
作者
Richiardi, Jonas [1 ,2 ]
Eryilmaz, Hamdi [3 ]
Schwartz, Sophie [3 ]
Vuilleumier, Patrik [3 ]
Van De Ville, Dimitri [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne, Med Image Proc Lab, CH-1015 Lausanne, Switzerland
[2] Univ Geneva, Med Image Proc Lab, CH-1211 Geneva, Switzerland
[3] Univ Geneva, Lab Neurol & Imaging Cognit, CH-1211 Geneva, Switzerland
基金
瑞士国家科学基金会;
关键词
fMRI; brain decoding; functional connectivity; graphs; decision tree; FUNCTIONAL CONNECTIVITY; NETWORK; CORTEX; SINGLE; MRI;
D O I
10.1109/ISBI.2010.5490194
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Functional connectivity analysis of fMRI data can reveal synchronized activity between anatomically distinct brain regions. Here, we exploit the characteristic connectivity graphs of task and resting epochs to perform classification between these conditions. Our approach is based on ensembles of decision trees, which combine powerful discriminative ability with interpretability of results. This makes it possible to extract discriminative graphs that represent a subset of the connections that distinguish best between the experimental conditions. Our experimental results also show that the method can be applied for group-level brain decoding.
引用
收藏
页码:1137 / 1140
页数:4
相关论文
共 50 条
  • [1] Decoding brain states from fMRI connectivity graphs
    Richiardi, Jonas
    Eryilmaz, Hamdi
    Schwartz, Sophie
    Vuilleumier, Patrik
    Van de Ville, Dimitri
    NEUROIMAGE, 2011, 56 (02) : 616 - 626
  • [2] Decision Predicate Graphs: Enhancing Interpretability in Tree Ensembles
    Arrighi, Leonardo
    Pennella, Luca
    Tavares, Gabriel Marques
    Barbon, Sylvio, Jr.
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, PT II, XAI 2024, 2024, 2154 : 311 - 332
  • [3] Decoding brain states using backward edge elimination and graph kernels in fMRI connectivity networks
    Mokhtari, Fatemeh
    Hossein-Zadeh, Gholam-Ali
    JOURNAL OF NEUROSCIENCE METHODS, 2013, 212 (02) : 259 - 268
  • [4] Classification of fMRI Signals Using Brain Activation-Based Decision Tree
    Lohariwal, Priyank
    Jalan, Devesh
    Chakraborty, Agniswar
    Sinha, Aniruddha
    Saha, Sanjoy Kumar
    IEEE SENSORS LETTERS, 2024, 8 (02) : 1 - 4
  • [5] Discriminating between brain rest and attention states using fMRI connectivity graphs and subtree SVM
    Mokhtari, Fatemeh
    Bakhtiari, Shahab K.
    Hossein-Zadeh, Gholam Ali
    Soltanian-Zadeh, Hamid
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [6] Using all data to generate decision tree ensembles
    Martínez-Muñoz, G
    Suárez, A
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2004, 34 (04): : 393 - 397
  • [7] Validation of brain connectivity analysis using fMRI simulation
    Hadi, Shamil M.
    Siadat, Mohammad-Reza
    Babajani-Feremi, Abbas
    INTERNATIONAL JOURNAL OF ENGINEERING SYSTEMS MODELLING AND SIMULATION, 2015, 7 (04) : 279 - 293
  • [8] Decoding of Emotional Visual Stimuli Using fMRI Brain Signal
    Yoshida, Shinichi
    2016 IEEE/ACIS 15TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS), 2016, : 925 - 928
  • [9] HARDWARE IMPLEMENTATION OF DECISION TREE ENSEMBLES
    Struharik, Rastislav J. R.
    Novak, Ladislav A.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2013, 22 (05)
  • [10] Decision tree simplification for classifier ensembles
    Windeatt, T
    Ardeshir, G
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2004, 18 (05) : 749 - 776