Immobilization of polyisobutene in semi-interpenetrating polymer network architecture

被引:0
|
作者
Davion, Benjamin [1 ]
Vancaeyzeele, Cedric [1 ]
Fichet, Odile [1 ]
Teyssie, Dominique [1 ]
机构
[1] Univ Cergy Pontoise, LPPI, Inst Mat, F-95000 Neuville Sur Oise, Cergy Pontoise, France
关键词
Polyisobutene; Semi-interpenetrating polymer networks; Flow inhibition; POLY(STYRENE-B-ISOBUTYLENE-B-STYRENE) BLOCK-COPOLYMERS; LIVING CARBOCATIONIC POLYMERIZATION; MECHANICAL-PROPERTIES; VISCOELASTIC PROPERTIES; BICOMPONENT NETWORKS; THERMOPLASTIC ELASTOMERS; AMPHIPHILIC NETWORKS; PHYSICAL-PROPERTIES; ELASTIC-MODULI; MORPHOLOGY;
D O I
10.1016/j.Polymer.2010.09.015
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The entrapment of linear polyisobutene (PIB) in semi-IPN architecture is shown to be as efficient as it is in cross-linkable telechelic PIB based full IPN architectures as far as the suppression of cold flow is concerned. Indeed, homogeneous linear PIB/cross-linked polycyclohexylmethacrylate (PCHMA) semi-IPNs containing from 20 to 70 wt% PIB and synthesized without solvent show no cold flow and higher mechanical properties than those of linear PIB or 50 wt% PIB containing blend. In addition, the particular barrier properties toward gas and water are preserved. Those properties arise from the phase co-continuity morphology of the semi-IPN materials which moreover compares with that of corresponding IPNs. A systematic study of the synthesis conditions (nature of the initiator, temperature, cross-linking density) showed that the reacting mixture viscosity is an important parameter that controls the phase separation degree in the final material. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5323 / 5331
页数:9
相关论文
共 50 条
  • [41] Thermal degradation kinetics of semi-interpenetrating polymer network based on polyurethane and siloxane
    Byczynski, Lukasz
    Dutkiewicz, Michal
    Maciejewski, Hieronim
    THERMOCHIMICA ACTA, 2013, 560 : 55 - 62
  • [42] A versatile strategy towards semi-interpenetrating polymer network for proton exchange membranes
    Zhao, Zhilei
    Pu, Hongting
    Chang, Zhihong
    Pan, Haiyan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (12) : 6657 - 6663
  • [43] Immobilization of laccase on polyacrylamide and polyacrylamide-κ-carragennan-based semi-interpenetrating polymer networks
    Gokgoz, M.
    Altinok, H.
    ARTIFICIAL CELLS BLOOD SUBSTITUTES AND BIOTECHNOLOGY, 2012, 40 (05): : 326 - 330
  • [44] Migration of substituted aromatic solvents into polyurethane/polystyrene semi-interpenetrating polymer network
    Kumar, H.
    Siddaramaiah
    Journal of Applied Polymer Science, 2007, 104 (01): : 378 - 390
  • [46] New Prospects in the Conception of IR Electro-Tunable Devices: The Use of Conducting Semi-Interpenetrating Polymer Network Architecture
    Verge, Pierre
    Aubert, Pierre-Henri
    Vidal, Frederic
    Sauques, Laurent
    Tran-Van, Francois
    Peralta, Sebastien
    Teyssie, Dominique
    Chevrot, Claude
    CHEMISTRY OF MATERIALS, 2010, 22 (16) : 4539 - 4547
  • [47] Polyhydroxyacrylate-polyurethane semi-interpenetrating polymer networks
    Rosu, D
    Ciobanu, C
    Cascaval, CN
    EUROPEAN POLYMER JOURNAL, 2001, 37 (03) : 587 - 595
  • [48] P and n dopable semi-interpenetrating polymer networks
    T.-X. Lav
    F. Tran-Van
    J.-P. Bonnet
    C. Chevrot
    S. Peralta
    D. Teyssié
    J. V. Grazulevicius
    Journal of Solid State Electrochemistry, 2007, 11 : 859 - 866
  • [49] Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes
    Fong, Kara D.
    Wang, Tiesheng
    Kim, Hyun-Kyung
    Kumar, R. Vasant
    Smoukov, Stoyan
    ACS ENERGY LETTERS, 2017, 2 (09): : 2014 - 2020
  • [50] Polyhydroxyacrylate-polyurethane semi-interpenetrating polymer networks
    Rosu, D., 1600, Elsevier Science Ltd, Exeter, United Kingdom (37):