Prediction of hemorrhagic transformation after experimental ischemic stroke using MRI-based algorithms

被引:8
|
作者
Bouts, Mark J. R. J. [1 ,2 ,3 ,4 ]
Tiebosch, Ivo A. C. W. [1 ]
Rudrapatna, Umesh S. [1 ]
van der Toorn, Annette [1 ]
Wu, Ona [2 ]
Dijkhuizen, Rick M. [1 ]
机构
[1] Univ Med Ctr Utrecht, Ctr Image Sci, Biomed MR Imaging & Spect Grp, Utrecht, Netherlands
[2] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA USA
[3] Leiden Univ, Inst Psychol, Leiden Inst Brain & Cognit, Leiden, Netherlands
[4] Leiden Univ, Med Ctr, Dept Radiol, Leiden, Netherlands
来源
基金
美国国家卫生研究院;
关键词
Ischemic stroke; hemorrhage; animal model; magnetic resonance imaging; prediction; TISSUE-PLASMINOGEN ACTIVATOR; BLOOD-BRAIN-BARRIER; THROMBOLYTIC THERAPY; EMBOLIC STROKE; TRANSFER CONSTANTS; DIFFUSION; REPERFUSION; DISRUPTION; INJURY; MODEL;
D O I
10.1177/0271678X16683692
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Estimation of hemorrhagic transformation (HT) risk is crucial for treatment decision-making after acute ischemic stroke. We aimed to determine the accuracy of multiparametric MRI-based predictive algorithms in calculating probability of HT after stroke. Spontaneously, hypertensive rats were subjected to embolic stroke and, after 3 h treated with tissue plasminogen activator (Group I: n = 6) or vehicle (Group II: n = 7). Brain MRI measurements of T-2, T-2*, diffusion, perfusion, and blood-brain barrier permeability were obtained at 2, 24, and 168 h post-stroke. Generalized linear model and random forest (RF) predictive algorithms were developed to calculate the probability of HT and infarction from acute MRI data. Validation against seven-day outcome on MRI and histology revealed that highest accuracy of hemorrhage prediction was achieved with a RF-based model that included spatial brain features (Group I: area under the receiver-operating characteristic curve (AUC) = 0.85 +/- 0.14; Group II: AUC = 0.89 +/- 0.09), with significant improvement over perfusion-or permeability-based thresholding methods. However, overlap between predicted and actual tissue outcome was significantly lower for hemorrhage prediction models (maximum Dice's Similarity Index (DSI) = 0.20 +/- 0.06) than for infarct prediction models (maximum DSI = 0.81 +/- 0.06). Multiparametric MRI-based predictive algorithms enable early identification of post-ischemic tissue at risk of HT and may contribute to improved treatment decision-making after acute ischemic stroke.
引用
收藏
页码:3065 / 3076
页数:12
相关论文
共 50 条
  • [21] The role of automated computed topography perfusion in prediction of hemorrhagic transformation after acute ischemic stroke
    Elsaid, Nada
    Bigliardi, Guido
    Dell'Acqua, Maria Luisa
    Vandelli, Laura
    Ciolli, Ludovico
    Picchetto, Livio
    Borzi, Giuseppe
    Ricceri, Riccardo
    Pentore, Roberta
    Vallone, Stefano
    Meletti, Stefano
    Saied, Ahmed
    [J]. NEURORADIOLOGY JOURNAL, 2023, 36 (02): : 182 - 188
  • [22] Use of Antithrombotics after Hemorrhagic Transformation in Acute Ischemic Stroke
    Kim, Joon-Tae
    Heo, Suk-Hee
    Park, Man-Seok
    Chang, Jane
    Choi, Kang-Ho
    Cho, Ki-Hyun
    [J]. PLOS ONE, 2014, 9 (02):
  • [23] Hemodynamics and Hemorrhagic Transformation After Endovascular Therapy for Ischemic Stroke
    Silverman, Andrew
    Kodali, Sreeja
    Sheth, Kevin N.
    Petersen, Nils H.
    [J]. FRONTIERS IN NEUROLOGY, 2020, 11
  • [24] Permeability Measures Predict Hemorrhagic Transformation after Ischemic Stroke
    Bivard, Andrew
    Kleinig, Timothy
    Churilov, Leonid
    Levi, Christopher
    Lin, Longting
    Cheng, Xin
    Chen, Chushuang
    Aviv, Richard
    Choi, Philip M. C.
    Spratt, Neil J.
    Butcher, Kenneth
    Dong, Qiang
    Parsons, Mark
    [J]. ANNALS OF NEUROLOGY, 2020, 88 (03) : 466 - 476
  • [25] On the Viability of Diffusion MRI-Based Microstructural Biomarkers in Ischemic Stroke
    Galazzo, Ilaria Boscolo
    Brusini, Lorenza
    Obertino, Silvia
    Zucchelli, Mauro
    Granziera, Cristina
    Menegaz, Gloria
    [J]. FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [26] MRI-based Algorithm for Acute Ischemic Stroke Subtype Classification
    Ko, Youngchai
    Lee, SooJoo
    Chung, Jong-Won
    Han, Moon-Ku
    Park, Jong-Moo
    Kang, Kyusik
    Park, Tai Hwan
    Park, Sang-Soon
    Cho, Yong-Jin
    Hong, Keun-Sik
    Lee, Kyung Bok
    Lee, Jun
    Kim, Dong-Eog
    Kim, Dae-Hyun
    Cha, Jae-Kwan
    Kim, Joon-Tae
    Choi, Jay Chol
    Shin, Dong-Ick
    Lee, Ji Sung
    Lee, Juneyoung
    Yu, Kyung-Ho
    Lee, Byung-Chul
    Bae, Hee-Joon
    [J]. JOURNAL OF STROKE, 2014, 16 (03) : 161 - 172
  • [27] A deep learning-based model for prediction of hemorrhagic transformation after stroke
    Jiang, Liang
    Zhou, Leilei
    Yong, Wei
    Cui, Jinluan
    Geng, Wen
    Chen, Huiyou
    Zou, Jianjun
    Chen, Yang
    Yin, Xindao
    Chen, Yu-Chen
    [J]. BRAIN PATHOLOGY, 2023, 33 (02)
  • [28] Biomarkers predict hemorrhagic transformation and stroke severity after acute ischemic stroke
    Krishnamoorthy, Soumya
    Sylaja, P. N.
    Sreedharan, Sapna Erat
    Singh, Gurpreet
    Damayanthi, Deepa
    Gopala, Srinivas
    Madhusoodanan, U. K.
    Ramachandran, Harikrishnan
    [J]. JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2023, 32 (01):
  • [29] MRI surrogate measures of blood-brain barrier permeability for the prediction of hemorrhagic transformation in acute ischemic stroke
    Kassner, A.
    Chen, S.
    Thornhill, R.
    Rammo, W.
    Mikulis, D.
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2009, 29 : S416 - S417
  • [30] Prediction of impending hemorrhagic transformation in ischemic stroke using magnetic resonance imaging in rats - Comment
    Fisher, M
    [J]. STROKE, 1998, 29 (01) : 151 - 151