Prediction of hemorrhagic transformation after experimental ischemic stroke using MRI-based algorithms

被引:8
|
作者
Bouts, Mark J. R. J. [1 ,2 ,3 ,4 ]
Tiebosch, Ivo A. C. W. [1 ]
Rudrapatna, Umesh S. [1 ]
van der Toorn, Annette [1 ]
Wu, Ona [2 ]
Dijkhuizen, Rick M. [1 ]
机构
[1] Univ Med Ctr Utrecht, Ctr Image Sci, Biomed MR Imaging & Spect Grp, Utrecht, Netherlands
[2] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA USA
[3] Leiden Univ, Inst Psychol, Leiden Inst Brain & Cognit, Leiden, Netherlands
[4] Leiden Univ, Med Ctr, Dept Radiol, Leiden, Netherlands
来源
基金
美国国家卫生研究院;
关键词
Ischemic stroke; hemorrhage; animal model; magnetic resonance imaging; prediction; TISSUE-PLASMINOGEN ACTIVATOR; BLOOD-BRAIN-BARRIER; THROMBOLYTIC THERAPY; EMBOLIC STROKE; TRANSFER CONSTANTS; DIFFUSION; REPERFUSION; DISRUPTION; INJURY; MODEL;
D O I
10.1177/0271678X16683692
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Estimation of hemorrhagic transformation (HT) risk is crucial for treatment decision-making after acute ischemic stroke. We aimed to determine the accuracy of multiparametric MRI-based predictive algorithms in calculating probability of HT after stroke. Spontaneously, hypertensive rats were subjected to embolic stroke and, after 3 h treated with tissue plasminogen activator (Group I: n = 6) or vehicle (Group II: n = 7). Brain MRI measurements of T-2, T-2*, diffusion, perfusion, and blood-brain barrier permeability were obtained at 2, 24, and 168 h post-stroke. Generalized linear model and random forest (RF) predictive algorithms were developed to calculate the probability of HT and infarction from acute MRI data. Validation against seven-day outcome on MRI and histology revealed that highest accuracy of hemorrhage prediction was achieved with a RF-based model that included spatial brain features (Group I: area under the receiver-operating characteristic curve (AUC) = 0.85 +/- 0.14; Group II: AUC = 0.89 +/- 0.09), with significant improvement over perfusion-or permeability-based thresholding methods. However, overlap between predicted and actual tissue outcome was significantly lower for hemorrhage prediction models (maximum Dice's Similarity Index (DSI) = 0.20 +/- 0.06) than for infarct prediction models (maximum DSI = 0.81 +/- 0.06). Multiparametric MRI-based predictive algorithms enable early identification of post-ischemic tissue at risk of HT and may contribute to improved treatment decision-making after acute ischemic stroke.
引用
收藏
页码:3065 / 3076
页数:12
相关论文
共 50 条
  • [1] Prediction of Hemorrhagic Transformation after Ischemic Stroke Using Machine Learning
    Choi, Jeong-Myeong
    Seo, Soo-Young
    Kim, Pum-Jun
    Kim, Yu-Seop
    Lee, Sang-Hwa
    Sohn, Jong-Hee
    Kim, Dong-Kyu
    Lee, Jae-Jun
    Kim, Chulho
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (09):
  • [2] Early identification of potentially salvageable tissue with MRI-based predictive algorithms after experimental ischemic stroke
    Bouts, Mark J. R. J. y
    Tiebosch, Ivo A. C. W.
    van der Toorn, Annette
    Viergever, Max A.
    Wu, Ona
    Dijkhuizen, Rick M.
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2013, 33 (07): : 1075 - 1082
  • [3] Infarct prediction and treatment assessment with MRI-based algorithms in experimental stroke models
    Wu, Ona
    Sumii, Toshihisa
    Asahi, Minoru
    Sasamata, Masao
    Ostergaard, Leif
    Rosen, Bruce R.
    Lo, Eng H.
    Dijkhuizen, Rick M.
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2007, 27 (01): : 196 - 204
  • [4] Prediction of Hemorrhagic Transformation in Ischemic Stroke
    Hiraga, Akiyuki
    [J]. NEUROEPIDEMIOLOGY, 2009, 33 (03) : 266 - 267
  • [5] Prediction of hemorrhagic transformation after acute ischemic stroke using hyperintense MCA sign
    Guo, G.
    Wu, R. H.
    Zhang, Y. P.
    Mikulis, D. J.
    terbrugger, K.
    [J]. 2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, 2006, : 4446 - +
  • [6] MRI-Based Predictors of Hemorrhagic Transformation in Patients With Stroke Treated by Intravenous Thrombolysis
    El Nawar, Rody
    Yeung, Jennifer
    Labreuche, Julien
    Chadenat, Marie-Laure
    Duong, Duc Long
    De Malherbe, Maxime
    Cordoliani, Yves-Sebastien
    Lapergue, Bertrand
    Pico, Fernando
    [J]. FRONTIERS IN NEUROLOGY, 2019, 10
  • [7] Prediction of hemorrhagic transformation after ischemic stroke: Superiority of FLAIR-ADC
    Adami, Alessandro
    Thijs, Vincent N.
    Tong, Dave C.
    Beaulieu, Chris
    Moseley, Michael E.
    Marks, Michael P.
    Albers, Gregory W.
    [J]. STROKE, 2007, 38 (02) : 496 - 496
  • [8] Neuroimaging Prediction of Hemorrhagic Transformation for Acute Ischemic Stroke
    Hong, Lan
    Hsu, Tzu-Ming
    Zhang, Yiran
    Cheng, Xin
    [J]. CEREBROVASCULAR DISEASES, 2022, 51 (04) : 542 - 552
  • [9] Hemorrhagic Transformation of Ischemic Stroke: Prediction with CT Perfusion
    Aviv, Richard I.
    d'Esterre, Christopher D.
    Murphy, Blake D.
    Hopyan, Julia J.
    Buck, Brian
    Mallia, Gabriella
    Li, Vivian
    Zhang, Liying
    Symons, Sean P.
    Lee, Ting-Yim
    [J]. RADIOLOGY, 2009, 250 (03) : 867 - 877
  • [10] Magnetization transfer contrast MRI in hemorrhagic transformation of ischemic stroke
    Knight, RA
    James, ER
    Fagan, SC
    Chopp, M
    [J]. STROKE, 1999, 30 (01) : 261 - 261