Optimal sensor placement for parameter estimation of bridges

被引:0
|
作者
Eskew, Edward [1 ]
Jang, Shinae [1 ]
机构
[1] Univ Connecticut, Dept Civil & Environm Engn, 261 Glenbrook Rd, Storrs, CT 06269 USA
关键词
Optimal Sensor Placement; Parameter Estimation; Effective Independence; Effective Independence Driving Point Residue; Modal Kinetic Energy; Genetic Algorithm; Mass Perturbation; Efficient Model Correction; Localization; Quantification; MODAL IDENTIFICATION;
D O I
10.1117/12.2261244
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Gathering measurements from a structure can be extremely valuable for tasks such as verifying a numerical model, or structural health monitoring (SHM) to identify changes in the natural frequencies and mode shapes which can be attributed to changes in the system. In most monitoring applications, the number of potential degrees-of-freedom (DOF) for monitoring greatly outnumbers the available sensors. Optimal sensor placement (OSP) is a field of research into different methods for locating the available sensors to gather the optimal measurements. Three common methods of OSP are the effective independence (EI), effective independence driving point residue (EI-DPR), and modal kinetic energy (MKE) methods. However, comparisons of the different OSP methods for SHM applications are limited. In this paper, a comparison of the performance of the three described OSP methods for parameter estimation is performed. Parameter estimation is implemented using modified parameter localization with direct model updating, and added mass quantification utilizing a genetic algorithm (GA). The quantification of the mass addition, using simulated measurements from the sensor networks developed by each OSP method, is compared to provide an evaluation of each OSP methods capability for parameter estimation applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Optimal sensor placement for structural parameter identification of bridges with modeling uncertainties
    Gonen, Semih
    Demirlioglu, Kultigin
    Erduran, Emrah
    [J]. ENGINEERING STRUCTURES, 2023, 292
  • [2] Optimal sensor placement for uncertain inverse problem of structural parameter estimation
    Liu, Jie
    Ouyang, Heng
    Han, Xu
    Liu, Guirong
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 160
  • [3] Optimal Sensor Placement Design for Profile Estimation of Distributed Parameter Systems
    Seth, Gaurav
    Bhushan, Mani
    Patwardhan, Sachin C.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (09) : 4046 - 4067
  • [4] Bayesian optimal sensor placement for parameter estimation under modeling and input uncertainties
    Ercan, Tulay
    Papadimitriou, Costas
    [J]. JOURNAL OF SOUND AND VIBRATION, 2023, 563
  • [5] Optimal static strain sensor placement for truss bridges
    Xiao, Feng
    Hulsey, J. Leroy
    Chen, Gang S.
    Xiang, Yujiang
    [J]. INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2017, 13 (05):
  • [6] Optimal sensor placement for structural parameter identification
    Chisari, Corrado
    Macorini, Lorenzo
    Amadio, Claudio
    Izzuddin, Bassam A.
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2017, 55 (02) : 647 - 662
  • [7] Optimal sensor placement for structural parameter identification
    Corrado Chisari
    Lorenzo Macorini
    Claudio Amadio
    Bassam A. Izzuddin
    [J]. Structural and Multidisciplinary Optimization, 2017, 55 : 647 - 662
  • [8] Optimal sensor placement for structural response estimation
    Chen Wei
    Zhao Wen-guang
    Zhu Hong-ping
    Chen Jun-feng
    [J]. JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2014, 21 (10) : 3993 - 4001
  • [9] Optimal sensor placement for structural response estimation
    陈玮
    赵文光
    朱宏平
    陈骏锋
    [J]. Journal of Central South University, 2014, 21 (10) : 3993 - 4001
  • [10] Optimal sensor placement for structural response estimation
    Wei Chen
    Wen-guang Zhao
    Hong-ping Zhu
    Jun-feng Chen
    [J]. Journal of Central South University, 2014, 21 : 3993 - 4001