Dynamic performance of key components for hydraulic power take-off of the wave energy converter

被引:9
|
作者
Chen Qijuan [1 ]
Jiang Wen [1 ]
Yue Xuhui [1 ]
Geng Dazhou [1 ]
Yan Donglin [1 ]
Wang Weiyu [1 ]
机构
[1] Wuhan Univ, Minist Educ, Key Lab Transients Hydraul Machinery, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
tanks (containers); condition monitoring; wave power generation; load shedding; remaining life assessment; valves; noise abatement; flow control; hydraulic systems; pendulums; dynamic performance; hydraulic power; wave energy converter; wave energy utilisation; HPTO; pendulum; high-pressure accumulator; oil tank; flow control valve; operational stability; excessive input power; output power; DESIGN; TECHNOLOGIES; STRATEGIES; SYSTEMS;
D O I
10.1049/iet-rpg.2018.6097
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Since the input power of the real waves varies continuously and periodically, how to stabilise the operation and generation during wave energy utilisation has become an inevitable and significant topic. This study focuses on the wave energy converter of a hydraulic power take-off (HPTO) connected to a pendulum and studies the influences of the key components, i.e. the high-pressure accumulator, oil tank and flow control valve, on the operational stability of HPTO by simulations and experiments. Parameters of the high-pressure accumulator are analysed and optimised. The dynamic performance of the HPTO with or without the oil tank is also investigated. Besides, the functions of the flow control valve in the cases of excessive input power and load shedding are given. Results show that the key components play very important roles in the operational stability of HPTO. Reasonable configurations of the high-pressure accumulator and oil tank are significant to improve the quality of output power and stability. Appropriate actions of the flow control valve are beneficial to protection and stability. Therefore, these key components should be considered preferentially during the design of HPTO.
引用
收藏
页码:2929 / 2938
页数:10
相关论文
共 50 条
  • [41] On a submerged wave energy converter with snap-through power take-off
    Wang, Lixian
    Tang, Hui
    Wu, Yanhua
    APPLIED OCEAN RESEARCH, 2018, 80 : 24 - 36
  • [42] Wave Energy Converter Power Take-Off System Scaling and Physical Modelling
    Giannini, Gianmaria
    Temiz, Irina
    Rosa-Santos, Paulo
    Shahroozi, Zahra
    Ramos, Victor
    Goteman, Malin
    Engstrom, Jens
    Day, Sandy
    Taveira-Pinto, Francisco
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (09)
  • [43] Simulation of the Power Take-off System for a Heaving Buoy Wave Energy Converter
    Feifei Cao
    Hongda Shi
    Ming Li
    Xiaochen Dong
    Demin Li
    Journal of Ocean University of China, 2020, 19 : 497 - 504
  • [44] Design, Construction and Testing of a Hydraulic Power Take-Off for Wave Energy Converters
    Lasa, Joseba
    Antolin, Juan Carlos
    Angulo, Carlos
    Estensoro, Patxi
    Santos, Maider
    Ricci, Pierpaolo
    ENERGIES, 2012, 5 (06): : 2030 - 2052
  • [45] A high-precise model for the hydraulic power take-off of a raft-type wave energy converter
    Liu, Changhai
    Hu, Min
    Gao, Wenzhi
    Chen, Jian
    Zeng, Yishan
    Wei, Daozhu
    Yang, Qingjun
    Bao, Gang
    ENERGY, 2021, 215
  • [46] Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review
    Jusoh, Mohd Afifi
    Ibrahim, Mohd Zamri
    Daud, Muhamad Zalani
    Albani, Aliashim
    Yusop, Zulkifli Mohd
    ENERGIES, 2019, 12 (23)
  • [47] Hydroelastic modelling of a deformable wave energy converter including power take-off
    Wang, Chao
    Wei, Yujia
    Chen, Wenchuang
    Huang, Luofeng
    MARINE STRUCTURES, 2024, 98
  • [48] CONTROL OF WAVE ENERGY CONVERTER WITH LOSSES IN ELECTRICAL POWER TAKE-OFF SYSTEM
    Zhou, Xiang
    Zou, Shangyan
    Weaver, Wayne W.
    Abdelkhalik, Ossama
    PROCEEDINGS OF THE ASME 2021 POWER CONFERENCE (POWER2021), 2021,
  • [49] Simulation of the Power Take-off System for a Heaving Buoy Wave Energy Converter
    Cao, Feifei
    Shi, Hongda
    Li, Ming
    Dong, Xiaochen
    Li, Demin
    JOURNAL OF OCEAN UNIVERSITY OF CHINA, 2020, 19 (03) : 497 - 504
  • [50] POWER TAKE-OFF DAMPING CONTROL PERFORMANCE ON THE POWER CONVERSION OF OSCILLATING-BUOY WAVE ENERGY CONVERTER
    Sun, Weijie
    Zhou, Yujie
    Wan, Zhengang
    Zhou, Xiaoguo
    Zhang, Wanchao
    THERMAL SCIENCE, 2021, 25 (06): : 4107 - 4115