Cooling mechanical resonators to the quantum ground state from room temperature

被引:25
|
作者
Liu, Yong-Chun [1 ,2 ,3 ]
Liu, Rui-Shan [1 ,2 ]
Dong, Chun-Hua [4 ]
Li, Yan [1 ,2 ,3 ]
Gong, Qihuang [1 ,2 ,3 ]
Xiao, Yun-Feng [1 ,2 ,3 ]
机构
[1] Peking Univ, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[4] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Peoples R China
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 01期
关键词
RESOLVED-SIDE-BAND; RADIATION-PRESSURE; CAVITY OPTOMECHANICS; MICROMECHANICAL OSCILLATOR; MICROMIRROR; MIRROR; MOTION; MODE;
D O I
10.1103/PhysRevA.91.013824
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Ground-state cooling ofmesoscopicmechanical resonators is a fundamental requirement for testing of quantum theory and for implementation of quantum information. We analyze the cavity optomechanical cooling limits in the intermediate coupling regime, where the light-enhanced optomechanical coupling strength is comparable with the cavity decay rate. It is found that in this regime the cooling breaks through the limits in both the strong-coupling and the weak-coupling regimes. The lowest cooling limit is derived analytically under the optimal conditions of cavity decay rate and coupling strength. In essence, cooling to the quantum ground state requires Q(m) > 2.4n(th), with Q(m) being the mechanical quality factor and n(th) being the thermal phonon number. Remarkably, ground-state cooling is achievable starting from room temperature, when the mechanical Q-frequency product Q(m)upsilon(m) > 1.5 x 10(13) Hz and both the cavity decay rate and the coupling strength exceed the thermal decoherence rate. Our study provides a general framework for optimizing the backaction cooling of mesoscopic mechanical resonators.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Quantum interference effects on ground-state optomechanical cooling
    Gu, Wen-ju
    Li, Gao-xiang
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [42] Nondeterministic ultrafast ground-state cooling of a mechanical resonator
    Li, Yong
    Wu, Lian-Ao
    Wang, Ying-Dan
    Yang, Li-Ping
    PHYSICAL REVIEW B, 2011, 84 (09):
  • [43] Ground-state cooling of a mechanical oscillator by a noisy environment
    Wang, Cheng
    Banniard, Louise
    Borkje, Kjetil
    Massel, Francesco
    de Lepinay, Laure Mercier
    Sillanpaa, Mika A.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [44] QUANTUM MECHANICAL STUDY OF LIH MOLECULE IN GROUND STATE
    HARRIS, FE
    TAYLOR, HS
    PHYSICA, 1964, 30 (01): : 105 - &
  • [45] Quantum ground state of self-organized atomic crystals in optical resonators
    Fernandez-Vidal, Sonia
    De Chiara, Gabriele
    Larson, Jonas
    Morigi, Giovanna
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [46] Ground state cooling of an optomechanical resonator with double quantum interference processes*
    Zhang, Shuo
    Li, Tan
    Duan, Qian-Hen
    Zhang, Jian-Qi
    Bao, Wan-Su
    CHINESE PHYSICS B, 2021, 30 (02)
  • [47] Ground-state cooling of a trapped ion by quantum interference pathways
    Zhang, Shuo
    Zhang, Jian-Qi
    Duan, Qian-Heng
    Guo, Chu
    Wu, Chun-Wang
    Wu, Wei
    Chen, Ping-Xing
    PHYSICAL REVIEW A, 2014, 90 (04):
  • [48] Ground state cooling of an optomechanical resonator with double quantum interference processes
    张硕
    李坦
    段乾恒
    张建奇
    鲍皖苏
    Chinese Physics B, 2021, 30 (02) : 312 - 319
  • [49] Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state
    Riviere, R.
    Deleglise, S.
    Weis, S.
    Gavartin, E.
    Arcizet, O.
    Schliesser, A.
    Kippenberg, T. J.
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [50] Cooling a Single Atom in an Optical Tweezer to Its Quantum Ground State
    Kaufman, A. M.
    Lester, B. J.
    Regal, C. A.
    PHYSICAL REVIEW X, 2012, 2 (04):