Behaviour of a non-local equation modelling linear friction welding

被引:9
|
作者
Kavallaris, N. I.
Lacey, A. A.
Nikolopoulos, C. V.
Voong, C.
机构
[1] Natl Tech Univ Athens, Sch Appl Math & Phys Sci, Dept Math, Athens 15780, Greece
[2] Heriot Watt Univ, Sch Math & Comp Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[4] Univ Aegean, Dept Math, Samos 83200, Greece
关键词
non-local parabolic problems;
D O I
10.1093/imamat/hxm031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A non-local parabolic equation modelling linear friction welding is studied. The equation applies on the half line and contains a non-linearity of the form f(u)/(integral(0)infinity f(u)dy)(1+a). For f(u) = e(u), global existence and convergence to a steady state are proved. Numerical calculations are also carried out for this case and for f(u) = (-u)(1/a).
引用
收藏
页码:597 / 616
页数:20
相关论文
共 50 条
  • [11] Modelling the linear friction welding of titanium blocks
    Vairis, A
    Frost, M
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 292 (01): : 8 - 17
  • [12] NUMERICAL MODELLING OF THE LINEAR FRICTION WELDING PROCESS
    Ceretti, E.
    Fratini, L.
    Giardini, C.
    La Spisa, D.
    [J]. INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2010, 3 : 1015 - 1018
  • [13] THE POISSON EQUATION FROM NON-LOCAL TO LOCAL
    Biccari, Umberto
    Hernandez-Santamaria, Victor
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [14] Numerical modelling of the linear friction welding process
    E. Ceretti
    L. Fratini
    C. Giardini
    D. La Spisa
    [J]. International Journal of Material Forming, 2010, 3 : 1015 - 1018
  • [15] Robust modelling of the dynamic behaviour of a friction non linear system.
    Ragot, Pascal
    Berger, Sebastien
    Aubry, Evelyne
    [J]. MECANIQUE & INDUSTRIES, 2010, 11 (02): : 123 - 132
  • [16] Integrable local and non-local vector Non-linear Schrodinger Equation with balanced loss and gain
    Sinha, Debdeep
    [J]. PHYSICS LETTERS A, 2022, 448
  • [17] On the decomposition method to the heat equation with non-linear and non-local boundary conditions
    Hadizadeh, M
    Maleknejad, K
    [J]. KYBERNETES, 1998, 27 (4-5) : 426 - +
  • [18] A non-linear and non-local boundary condition for a diffusion equation in petroleum engineering
    Giroire, J
    Ha-Duong, T
    Moumas, V
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (13) : 1527 - 1552
  • [19] Behaviour of a non-local reactive convective problem modelling Ohmic heating of foods
    Lacey, AA
    Tzanetis, DE
    Vlamos, PM
    [J]. QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1999, 52 : 623 - 644
  • [20] The Yamabe equation in a non-local setting
    Servadei, Raffaella
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2013, 2 (03) : 235 - 270