Behaviour of a non-local equation modelling linear friction welding

被引:9
|
作者
Kavallaris, N. I.
Lacey, A. A.
Nikolopoulos, C. V.
Voong, C.
机构
[1] Natl Tech Univ Athens, Sch Appl Math & Phys Sci, Dept Math, Athens 15780, Greece
[2] Heriot Watt Univ, Sch Math & Comp Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[4] Univ Aegean, Dept Math, Samos 83200, Greece
关键词
non-local parabolic problems;
D O I
10.1093/imamat/hxm031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A non-local parabolic equation modelling linear friction welding is studied. The equation applies on the half line and contains a non-linearity of the form f(u)/(integral(0)infinity f(u)dy)(1+a). For f(u) = e(u), global existence and convergence to a steady state are proved. Numerical calculations are also carried out for this case and for f(u) = (-u)(1/a).
引用
收藏
页码:597 / 616
页数:20
相关论文
共 50 条
  • [1] Nonlinear non-local elliptic equation modelling electrostatic actuation
    Lin, Fanghua
    Yang, Yisong
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2081): : 1323 - 1337
  • [2] Non-linear and non-local behaviour in spontaneously electrical solids
    Roman, M.
    Taj, S.
    Gutowski, M.
    McCoustra, M. R. S.
    Dunn, A. C.
    Keolopile, Z. G.
    Rosu-Finsen, A.
    Cassidy, A. M.
    Field, D.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (07) : 5112 - 5116
  • [3] Non-linear Schrodinger equation with non-local regional diffusion
    Felmer, Patricio
    Torres, Cesar
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 75 - 98
  • [4] NON-LOCAL PROBLEM WITH NON-LINEAR CONDITIONS FOR A HYPERBOLIC EQUATION
    Dmitriev, V. B.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2009, (01): : 26 - 32
  • [5] Thermal modelling of linear friction welding
    Jedrasiak, P.
    Shercliff, H. R.
    McAndrew, A. R.
    Colegrove, P. A.
    [J]. MATERIALS & DESIGN, 2018, 156 : 362 - 369
  • [6] EXPERIMENTAL INVESTIGATION AND NON-LOCAL MODELLING OF THE THERMOMECHANICAL BEHAVIOUR OF REFRACTORY CONCRETE
    Mamen, Belgacem
    Benali, Farouk
    Boutrid, Abdelaziz
    Sahli, Mohamed
    Hamidouche, Mohamed
    Fantozzi, Gilbert
    [J]. CERAMICS-SILIKATY, 2021, 65 (03) : 295 - 304
  • [7] Modelling of elastoplastic behaviour with non-local damage in concrete under compression
    Mohamad-Hussein, A.
    Shao, J. F.
    [J]. COMPUTERS & STRUCTURES, 2007, 85 (23-24) : 1757 - 1768
  • [8] Asymptotic Behavior of a Non-Local Hyperbolic Equation Modelling Ohmic Heating
    Xianchao WANG 1
    2.Wuhan College
    [J]. Journal of Mathematical Research with Applications, 2012, 32 (04) : 476 - 484
  • [9] Non-linear Schrödinger equation with non-local regional diffusion
    Patricio Felmer
    César Torres
    [J]. Calculus of Variations and Partial Differential Equations, 2015, 54 : 75 - 98
  • [10] Global solution for a non-local eikonal equation modelling dislocation dynamics
    El Hajj, A.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 168 : 154 - 175