Nonlinear obstacle problems with double phase in the borderline case

被引:4
|
作者
Byun, Sun-Sig [1 ,2 ]
Cho, Yumi [1 ]
Oh, Jehan [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
BMO coefficient; Calderon-Zygmund estimate; double phase problem; obstacle problem; Reifenberg flat domain; ELLIPTIC-EQUATIONS; REGULARITY; GRADIENT; MINIMIZERS; FUNCTIONALS; INTEGRALS; EXISTENCE; CALCULUS; THEOREM; SPACES;
D O I
10.1002/mana.201800277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a double phase problem with an irregular obstacle. The energy functional under consideration is characterized by the fact that both ellipticity and growth switch between a type of polynomial and a type of logarithm, which can be regarded as a borderline case of the double phase functional with (p,q)-growth. We obtain an optimal global Calderon-Zygmund type estimate for the obstacle problem with double phase in the borderline case.
引用
收藏
页码:651 / 669
页数:19
相关论文
共 50 条
  • [1] Parabolic double phase obstacle problems
    Carl, Siegfried
    Winkert, Patrick
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 80
  • [2] Irregular obstacle problems for Orlicz double phase
    Baasandorj, Sumiya
    Byun, Sun-Sig
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (01)
  • [3] DOUBLE PHASE OBSTACLE PROBLEMS WITH VARIABLE EXPONENT
    Zeng, Shengda
    Radulescu, Vicentiu D.
    Winkert, Patrick
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2022, 27 (9-10) : 611 - 645
  • [4] Existence and regularity for nonlinear parabolic double obstacle problems
    Byun, Sun-Sig
    Ryu, Seungjin
    NONLINEARITY, 2023, 36 (09) : 4785 - 4809
  • [5] Gradient estimates for nonlinear elliptic double obstacle problems
    Byun, Sun-Sig
    Ryu, Seungjin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194 (194)
  • [6] POINTWISE REGULARITY OF SOLUTIONS TO NONLINEAR DOUBLE OBSTACLE PROBLEMS
    KILPELAINEN, T
    ZIEMER, WP
    ARKIV FOR MATEMATIK, 1991, 29 (01): : 83 - 106
  • [7] Global gradient estimates for a borderline case of double phase problems with measure data
    Byun, Sun-Sig
    Cho, Namkyeong
    Youn, Yeonghun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
  • [8] Identification of discontinuous parameters in double phase obstacle problems
    Zeng, Shengda
    Bai, Yunru
    Winkert, Patrick
    Yao, Jen-Chih
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01) : 1 - 22
  • [9] Inverse Problems for Double-Phase Obstacle Problems with Variable Exponents
    Zeng, Shengda
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 196 (02) : 666 - 699
  • [10] Inverse Problems for Double-Phase Obstacle Problems with Variable Exponents
    Shengda Zeng
    Nikolaos S. Papageorgiou
    Patrick Winkert
    Journal of Optimization Theory and Applications, 2023, 196 : 666 - 699