Parabolic double phase obstacle problems

被引:1
|
作者
Carl, Siegfried [1 ]
Winkert, Patrick [2 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Inst Math, D-06099 Halle, Germany
[2] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
关键词
Double phase operator; Musielak-Orlicz Sobolev space; Obstacle problem; Parabolic problems; Penalty technique; Sub-supersolution; VARIABLE EXPONENT; FUNCTIONALS; GROWTH; EQUATIONS;
D O I
10.1016/j.nonrwa.2024.104169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence results for the parabolic double phase obstacle problem: Find u is an element of K subset of 0 with u(., 0) = 0 satisfying 0 is an element of u(t) + Au + F(u) + partial derivative I-K(u) in X-0*, where A : X-0 -> X-0* given by Au := - div ( |del u|(P-2)del u + mu(x)|del u|(q-2)del u) for u is an element of X-0, is the double phase operator acting on X-0 = L-p(0, tau; W-0(1, H) (Omega) with W-0(1, H)(Omega) denoting the associated Musielak-Orlicz Sobolev space with generalized homogeneous boundary values. The obstacle is represented by the closed convex set k with the obstacle function psi through K = {v is an element of X-0 : v(x, t) <= psi(x, t) for a.a. (x, t) is an element of = Omega x (0, tau)} and I-K is the indicator function related to K with partial derivative I-K denoting its subdifferential in the sense of convex analysis.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Existence and regularity for nonlinear parabolic double obstacle problems
    Byun, Sun-Sig
    Ryu, Seungjin
    NONLINEARITY, 2023, 36 (09) : 4785 - 4809
  • [2] Irregular obstacle problems for Orlicz double phase
    Baasandorj, Sumiya
    Byun, Sun-Sig
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (01)
  • [3] DOUBLE PHASE OBSTACLE PROBLEMS WITH VARIABLE EXPONENT
    Zeng, Shengda
    Radulescu, Vicentiu D.
    Winkert, Patrick
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2022, 27 (9-10) : 611 - 645
  • [4] Noncoercive parabolic obstacle problems
    Farroni, Fernando
    Greco, Luigi
    Moscariello, Gioconda
    Zecca, Gabriella
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [5] Symmetrization in parabolic obstacle problems
    Ferone, A
    Volpicelli, R
    BULLETIN DES SCIENCES MATHEMATIQUES, 1996, 120 (06): : 555 - 572
  • [6] Nonlinear obstacle problems with double phase in the borderline case
    Byun, Sun-Sig
    Cho, Yumi
    Oh, Jehan
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (04) : 651 - 669
  • [7] Identification of discontinuous parameters in double phase obstacle problems
    Zeng, Shengda
    Bai, Yunru
    Winkert, Patrick
    Yao, Jen-Chih
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01) : 1 - 22
  • [8] Inverse Problems for Double-Phase Obstacle Problems with Variable Exponents
    Zeng, Shengda
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 196 (02) : 666 - 699
  • [9] Inverse Problems for Double-Phase Obstacle Problems with Variable Exponents
    Shengda Zeng
    Nikolaos S. Papageorgiou
    Patrick Winkert
    Journal of Optimization Theory and Applications, 2023, 196 : 666 - 699
  • [10] ASYMPTOTICS FOR A PARABOLIC DOUBLE OBSTACLE PROBLEM
    CHEN, XF
    ELLIOTT, CM
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1994, 444 (1922): : 429 - 445