A MULTI-TASK CONVOLUTIONAL NEURAL NETWORK FOR BLIND STEREOSCOPIC IMAGE QUALITY ASSESSMENT USING NATURALNESS ANALYSIS

被引:10
|
作者
Bourbia, Salima [1 ]
Karine, Ayoub [2 ]
Chetouani, Aladine [3 ]
El Hassoun, Mohammed [1 ,4 ]
机构
[1] Mohammed V Univ Rabat, LRIT, Rabat, Morocco
[2] ISEN Yncrea Ouest, L bISEN, 33 Quater Chemin Champ Manoeuvre, F-44470 Carquefou, France
[3] Univ Orleans, Lab PRISME, Orleans, France
[4] Mohammed V Univ Rabat, FLSH, Rabat, Morocco
关键词
Blind stereoscopic image quality assessment; Convolutional Neural Network; Multi-task deep learning; Naturalness based-features; Binocular features; TARGET RECOGNITION; STATISTICAL-MODEL;
D O I
10.1109/ICIP42928.2021.9506639
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the problem of blind stereoscopic image quality assessment (NR-SIQA) using a new multi-task deep learning based-method. In the field of stereoscopic vision, the information is fairly distributed between the left and right views as well as the binocular phenomenon. In this work, we propose to integrate these characteristics to estimate the quality of stereoscopic images without reference through a convolutional neural network. Our method is based on two main tasks: the first task predicts naturalness analysis based features adapted to stereo images, while the second task predicts the quality of such images. The former, so-called auxiliary task, aims to find more robust and relevant features to improve the quality prediction. To do this, we compute naturalness-based features using a Natural Scene Statistics (NSS) model in the complex wavelet domain. It allows to capture the statistical dependency between pairs of the stereoscopic images. Experiments are conducted on the well known LIVE PHASE I and LIVE PHASE II databases. The results obtained show the relevance of our method when comparing with those of the state-of-the-art.
引用
收藏
页码:1434 / 1438
页数:5
相关论文
共 50 条
  • [41] Objective Assessment of Stereoscopic Image Comfort Based on Convolutional Neural Network
    Li Sumei
    Chang Yongli
    Duan Zhicheng
    ACTA OPTICA SINICA, 2018, 38 (06)
  • [42] Blind stereoscopic image quality assessment using 3D saliency selected binocular perception and 3D convolutional neural network
    Li, Chaofeng
    Yun, LiXia
    Xu, Shoukun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (13) : 18437 - 18455
  • [43] FaceHunter: A multi-task convolutional neural network based face detector
    Wang, Dong
    Yang, Jing
    Deng, Jiankang
    Liu, Qingshan
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2016, 47 : 476 - 481
  • [44] Multi-task convolutional neural network system for license plate recognition
    Kim, Hong-Hyun
    Park, Je-Kang
    Oh, Joo-Hee
    Kang, Dong-Joong
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (06) : 2942 - 2949
  • [45] Adaptive multi-task convolutional neural network for optical performance monitoring
    Zeng, Qinghui
    Kong, Yibu
    Zhou, Peng
    Lu, Ye
    OPTICS COMMUNICATIONS, 2025, 583
  • [46] Multi-Task Joint Learning for Graph Convolutional Neural Network Recommendations
    Wang, Yonggui
    Zou, Heyu
    Computer Engineering and Applications, 2024, 60 (04) : 306 - 314
  • [47] Robust face recognition based on multi-task convolutional neural network
    Ge, Huilin
    Dai, Yuewei
    Zhu, Zhiyu
    Wang, Biao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 6638 - 6651
  • [48] FMT: fusing multi-task convolutional neural network for person search
    Zhai, Sulan
    Liu, Shunqiang
    Wang, Xiao
    Tang, Jin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (22) : 31605 - 31616
  • [49] FMT: fusing multi-task convolutional neural network for person search
    Sulan Zhai
    Shunqiang Liu
    Xiao Wang
    Jin Tang
    Multimedia Tools and Applications, 2019, 78 : 31605 - 31616
  • [50] Fruit freshness detection based on multi-task convolutional neural network
    Zhang, Yinsheng
    Yang, Xudong
    Cheng, Yongbo
    Wu, Xiaojun
    Sun, Xiulan
    Hou, Ruiqi
    Wang, Haiyan
    CURRENT RESEARCH IN FOOD SCIENCE, 2024, 8