Frequency dependence of localization length of an electromagnetic wave in a one-dimensional system

被引:11
|
作者
Vinogradov, AP [1 ]
Merzlikin, AM [1 ]
机构
[1] Russian Acad Sci, Inst Theoret & Appl Electromagnet, OIVT, Moscow 127412, Russia
关键词
localization; finite component system; one-dimensional system;
D O I
10.1016/S0921-4526(03)00473-3
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
It is shown that the existence in the high-frequency limit of the localization length of an electromagnetic wave in a randomly layered system requires the presence of an infinitely large number of layers with different incommensurable optical paths. Moreover, the measure of the layers with optical paths that are multiples of any real number should equal zero. The localization length in the high-frequency limit is determined by the mean value of the layer thickness and impedance distribution only. The scaling behavior L-loc(k(0))similar tok(0)(-2) is observed only if the mean value tends to zero (corresponding to a delta-correlated process). (C) 2003 Published by Elsevier B.V.
引用
收藏
页码:126 / 131
页数:6
相关论文
共 50 条
  • [41] Spectral dependence of the localization degree in the one-dimensional disordered Lloyd model
    G. G. Kozlov
    [J]. Theoretical and Mathematical Physics, 2012, 171 : 531 - 540
  • [42] ONE-DIMENSIONAL SOFTENING WITH LOCALIZATION
    SCHREYER, HL
    CHEN, Z
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1986, 53 (04): : 791 - 797
  • [43] Electromagnetic wave theory of one-dimensional photonic crystal and method of realization
    Chen, M.
    Gu, P.F.
    Liu, X.
    Li, H.F.
    [J]. Guangzi Xuebao/Acta Photonica Sinica, 2001, 30 (08):
  • [44] Analysis on transmission properties of electromagnetic wave in one-dimensional multilayer structure
    [J]. Liu, M. (lmy771204@126.com), 1600, Science Press (40):
  • [45] ELECTROMAGNETIC WAVE PROPAGATION CHARACTERISTICS IN A ONE-DIMENSIONAL METALLIC PHOTONIC CRYSTAL
    Aly, Arafa H.
    Ryu, Sang-Wan
    Wu, Chien-Jang
    [J]. JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2008, 17 (03) : 255 - 264
  • [46] Surface electromagnetic wave sensor utilizing a one-dimensional photonic crystal
    Gryga, M.
    Ciprian, D.
    Hlubina, P.
    [J]. OPTICAL SENSORS 2019, 2019, 11028
  • [47] Time and frequency domain scattering for the one-dimensional wave equation
    Browning, BL
    [J]. INVERSE PROBLEMS, 2000, 16 (05) : 1377 - 1403
  • [48] One-dimensional softening with localization
    Schreyer, Howard L.
    Chen, Z.
    [J]. Journal of Applied Mechanics, Transactions ASME, 1986, 53 (04): : 791 - 797
  • [49] Investigation of electromagnetic wave propagation through one-dimensional plasma array
    Naito, T.
    Yamamoto, K.
    Yamaura, S.
    Tanaka, T.
    Ogino, H.
    Sakai, O.
    [J]. 2015 9TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2015,
  • [50] Scattering of an electromagnetic wave in a one-dimensional medium with an arbitrary index of refraction
    Sedrakian D.M.
    Gevorgyan A.H.
    Khachatrian A.Z.
    [J]. Astrophysics, 2000, 43 (2) : 198 - 203