Symbolic Hyperdimensional Vectors with Sparse Graph Convolutional Neural Networks

被引:0
|
作者
Cornell, Filip [1 ,2 ]
Karlgren, Jussi [2 ]
Animesh [3 ]
Girdzijauskas, Sarunas [1 ,2 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Stockholm, Sweden
[2] Gavagai, Stockholm, Sweden
[3] Indian Inst Technol Kharagpur, Ctr Excellence Artificial Intelligence, Kharagpur, W Bengal, India
关键词
vector symbolic architectures; graph neural networks; random indexing; SMALL-WORLD;
D O I
10.1109/IJCNN55064.2022.9892300
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel way of representing graphs for processing in Graph Neural Networks. We reduce the dimensionality of the input data by using Random Indexing, a Vector Symbolic Architectural framework; we implement a new trainable neural layer, also inspired by Vector Symbolic Architectures; we leverage the sparseness of the incoming data in a Sparse Neural Network framework. Our experiments on a number of publicly available datasets and standard benchmarks demonstrate that we can reduce the number of parameters by up to two orders of magnitude. We show how this parsimonious approach not only delivers competitive results but even improves performance for node classification and link prediction. We find that this holds in particular for cases where the graph lacks node features.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Batched Sparse Matrix Multiplication for Accelerating Graph Convolutional Networks
    Nagasaka, Yusuke
    Nukada, Akira
    Kojima, Ryosuke
    Matsuoka, Satoshi
    2019 19TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2019, : 231 - 240
  • [32] GENERIC SPARSE GRAPH BASED CONVOLUTIONAL NETWORKS FOR FACE RECOGNITION
    Wu, Renjie
    Kamata, Sei-ichiro
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1589 - 1593
  • [33] GENERIC SPARSE GRAPH BASED CONVOLUTIONAL NETWORKS FOR FACE RECOGNITION
    Wu, Renjie
    Kamata, Sei-Ichiro
    Proceedings - International Conference on Image Processing, ICIP, 2021, 2021-September : 1589 - 1593
  • [34] Extrapolation of Ventricular Activation Times From Sparse Electroanatomical Data Using Graph Convolutional Neural Networks
    Meister, Felix
    Passerini, Tiziano
    Audigier, Chloe
    Lluch, Eric
    Mihalef, Viorel
    Ashikaga, Hiroshi
    Maier, Andreas
    Halperin, Henry
    Mansi, Tommaso
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [35] Dynamic block sparse reparameterization of convolutional neural networks
    Vooturi, Dharma Teja
    Varma, Girish
    Kothapalli, Kishore
    Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019, 2019, : 3046 - 3053
  • [36] Dynamic Block Sparse Reparameterization of Convolutional Neural Networks
    Vooturi, Dharma Teja
    Varma, Girish
    Kothapalli, Kishore
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3046 - 3053
  • [37] SparTen: A Sparse Tensor Accelerator for Convolutional Neural Networks
    Gondimalla, Ashish
    Chesnut, Noah
    Thottethodi, Mithuna
    Vijaykumar, T. N.
    MICRO'52: THE 52ND ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, 2019, : 151 - 165
  • [38] Photoacoustic microscopy with sparse data by convolutional neural networks
    Zhou, Jiasheng
    He, Da
    Shang, Xiaoyu
    Guo, Zhendong
    Chen, Sung-Liang
    Luo, Jiajia
    PHOTOACOUSTICS, 2021, 22
  • [39] Graph Neural Network Meets Sparse Representation: Graph Sparse Neural Networks via Exclusive Group Lasso
    Jiang, Bo
    Wang, Beibei
    Chen, Si
    Tang, Jin
    Luo, Bin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12692 - 12698
  • [40] Enhancing earth target classification in hyperspectral imagery using graph convolutional neural networks and graph-regularized sparse coding
    Geetha, T. S.
    Chellaswamy, C.
    Kaliraja, T.
    Reddy, K. Ramachandra
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2025, 37