Modeling Nanoscale III-V Channel MOSFETs with the Self-Consistent Multi-Valley/Multi-Subband Monte Carlo Approach

被引:0
|
作者
Caruso, Enrico [1 ,2 ]
Esseni, David [1 ]
Gnani, Elena [3 ]
Lizzit, Daniel [1 ]
Palestri, Pierpaolo [1 ]
Pin, Alessandro [1 ]
Puglisi, Francesco Maria [4 ]
Selmi, Luca [4 ]
Zagni, Nicolo [4 ]
机构
[1] Univ Udine, Polytechn Dept Engn & Architecture, I-33100 Udine, Italy
[2] Infineon Technol Austria AG, Siemensstrasse 2, A-9500 Villach, Austria
[3] Univ Bologna, ARCES Res Ctr, Dept Elect Engn DEI, I-40136 Bologna, Italy
[4] Univ Modena & Reggio Emilia, Dept Engn Enzo, Via P. Vivarelli 10, I-41125 Modena, Italy
关键词
III-V semiconductors; modeling and simulation; Monte Carlo; TRANSPORT; FETS; SEMICONDUCTORS; QUANTIZATION; SIMULATION; SILICON; PLANAR; LENGTH; TRAPS; INAS;
D O I
10.3390/electronics10202472
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We describe the multi-valley/multi-subband Monte Carlo (MV-MSMC) approach to model nanoscale MOSFETs featuring III-V semiconductors as channel material. This approach describes carrier quantization normal to the channel direction, solving the Schrodinger equation while off-equilibrium transport is captured by the multi-valley/multi-subband Boltzmann transport equation. In this paper, we outline a methodology to include quantum effects along the transport direction (namely, source-to-drain tunneling) and provide model verification by comparison with Non-Equilibrium Green's Function results for nanoscale MOSFETs with InAs and InGaAs channels. It is then shown how to use the MV-MSMC to calibrate a Technology Computer Aided Design (TCAD) simulation deck based on the drift-diffusion model that allows much faster simulations and opens the doors to variability studies in III-V channel MOSFETs.</p>
引用
收藏
页数:15
相关论文
共 27 条
  • [21] Comparative study on nano-scale III-V MOSFETs with various channel materials using quantum-corrected Monte Carlo simulation
    Homma, Takahiro
    Hasegawa, Kei
    Watanabe, Hisanao
    Hara, Shinsuke
    Fujishiro, Hiroki I.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 2, 2012, 9 (02):
  • [22] Fully quantum self-consistent study of ultimate DG-MOSFETs including realistic scattering using a Wigner Monte-Carlo approach
    Querlioz, D.
    Saint-Martin, J.
    Do, V. -N.
    Bournel, A.
    Dollfus, P.
    2006 INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2006, : 685 - +
  • [23] Comparative study on drive current of III-V semiconductor, Ge and Si channel n-MOSFETs based on quantum-corrected Monte Carlo simulation
    Mori, Takashi
    Azuma, Yusuke
    Tsuchiya, Hideaki
    Miyoshi, Tanroku
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2008, 7 (02) : 237 - 241
  • [24] Interaction of the solar wind with interstellar neutral gas: a comparison between self-consistent Monte-Carlo and multi-fluid approaches
    Heerikhuisen, J
    Florinski, V
    Zank, GP
    Mueller, HR
    Proceedings of the Conference Solar Wind 11 - SOHO 16: CONNECTING SUN AND HELIOSPHERE, 2005, 592 : 339 - 342
  • [25] Computer modeling of polymer stars in variable solvent conditions: a comparison of MD simulations, self-consistent field (SCF) modeling and novel hybrid Monte Carlo SCF approach
    Kazakov, Alexander D.
    Prokacheva, Varvara M.
    Uhlik, Filip
    Kosovan, Peter
    Leermakers, Frans A. M.
    SOFT MATTER, 2021, 17 (03) : 580 - 591
  • [26] Self-consistent full band two-dimensional Monte Carlo two-dimensional Poisson device solver for modeling SiGe p-channel devices
    Krishnan, S.
    Fischetti, M.
    Vasileska, D.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2006, 24 (04): : 1997 - 2003
  • [27] A direct Monte Carlo approach for the modeling of neutrals at the plasma edge and its self-consistent coupling with the 2D fluid plasma edge turbulence model HESEL
    Kvist, Kristoffer
    Thrysoe, Alexander Simon
    Haugbolle, Troels
    Nielsen, Anders Henry
    PHYSICS OF PLASMAS, 2024, 31 (03)