Application of maximum-likelihood estimation in optical coherence tomography for nanometer-class thickness estimation

被引:0
|
作者
Huang, Jinxin [1 ]
Yuan, Qun [2 ,3 ]
Tankam, Patrice [2 ]
Clarkson, Eric [4 ]
Kupinski, Matthew [5 ]
Hindman, Holly B. [6 ]
Aquavella, James V. [6 ]
Rolland, Jannick P. [2 ]
机构
[1] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[2] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
[3] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Jiangsu, Peoples R China
[4] Univ Arizona, Dept Radiol, Tucson, AZ 85720 USA
[5] Univ Arizona, Coll Opt Sci, Tucson, AZ 85720 USA
[6] Univ Rochester, Flaum Eye Inst, Rochester, NY 14642 USA
关键词
Task-based assessment; optical instrumentation; coherence and statistical optics; optical coherence tomography; TEAR FILM THICKNESS; EYE WORKSHOP 2007; REFRACTIVE-INDEX; SUBCOMMITTEE; PRECORNEAL; DYNAMICS; DISEASE; PHANTOM;
D O I
10.1117/12.2083160
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In biophotonics imaging, one important and quantitative task is layer-thickness estimation. In this study, we investigate the approach of combining optical coherence tomography and a maximum-likelihood (ML) estimator for layer thickness estimation in the context of tear film imaging. The motivation of this study is to extend our understanding of tear film dynamics, which is the prerequisite to advance the management of Dry Eye Disease, through the simultaneous estimation of the thickness of the tear film lipid and aqueous layers. The estimator takes into account the different statistical processes associated with the imaging chain. We theoretically investigated the impact of key system parameters, such as the axial point spread functions (PSF) and various sources of noise on measurement uncertainty. Simulations show that an OCT system with a 1 mu m axial PSF (FWHM) allows unbiased estimates down to nanometers with nanometer precision. In implementation, we built a customized Fourier domain OCT system that operates in the 600 to 1000 nm spectral window and achieves 0.93 micron axial PSF in corneal epithelium. We then validated the theoretical framework with physical phantoms made of custom optical coatings, with layer thicknesses from tens of nanometers to microns. Results demonstrate unbiased nanometer-class thickness estimates in three different physical phantoms.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] MISSING DATA AND MAXIMUM-LIKELIHOOD ESTIMATION
    HSIAO, C
    ECONOMICS LETTERS, 1980, 6 (03) : 249 - 253
  • [22] Maximum-likelihood estimation of the density matrix
    Banaszek, K
    D'Ariano, GM
    Paris, MGA
    Sacchi, MF
    PHYSICAL REVIEW A, 2000, 61 (01): : 4
  • [24] Maximum-likelihood estimation of Mueller matrices
    Aiello, A
    Puentes, G
    Voigt, D
    Woerdman, JP
    OPTICS LETTERS, 2006, 31 (06) : 817 - 819
  • [25] MAXIMUM-LIKELIHOOD ESTIMATION - THE BEST PEST
    PENTLAND, A
    PERCEPTION & PSYCHOPHYSICS, 1980, 28 (04): : 377 - 379
  • [26] APPROXIMATE MAXIMUM-LIKELIHOOD FREQUENCY ESTIMATION
    STOICA, P
    HANDEL, P
    SODERSTROM, T
    AUTOMATICA, 1994, 30 (01) : 131 - 145
  • [27] Maximum-likelihood methods for phylogeny estimation
    Sullivan, J
    MOLECULAR EVOLUTION: PRODUCING THE BIOCHEMICAL DATA, PART B, 2005, 395 : 757 - 779
  • [28] Maximum-likelihood phase and channel estimation for coherent optical OFDM
    Shieh, W.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (5-8) : 605 - 607
  • [29] Maximum-likelihood optical flow estimation using differential constraints
    Tsui, CJ
    Galatsanos, NP
    Katsaggelos, AK
    PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 53 - 56
  • [30] MAXIMUM-LIKELIHOOD ESTIMATION OF SEISMIC MAGNITUDE
    RINGDAL, F
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 1976, 66 (03) : 789 - 802