A Truthful Online Mechanism for Collaborative Computation Offloading in Mobile Edge Computing

被引:58
|
作者
He, Junyi [1 ]
Zhang, Di [2 ]
Zhou, Yuezhi [1 ]
Zhang, Yaoxue [1 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
[2] Beijing Jiaotong Univ, Sch Software Engn, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Collaborative computation offloading; social welfare maximization (SWM); truthful online mechanism;
D O I
10.1109/TII.2019.2960127
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Collaborative computation offloading in mobile edge computing where edge users offload tasks opportunistically to resourceful neighboring mobile devices (MDs), offers a promising solution to satisfy low-latency requirements. However, most existing works assume that those MDs volunteer to help edge users without an incentive mechanism. In this article, we propose an auction-based incentive mechanism, where users and MDs participate in the system dynamically. Our auction mechanism runs in the online fashion and optimizes the long-term system welfare without knowledge of future information, e.g., task start time, task length, resource demand, and valuation, etc. We prove that the proposed online mechanism achieves the desired properties, including individual rationality, truthfulness, and computational tractability. Moreover, the theoretical competitive ratio shows that our online mechanism achieves near-optimal long-term social welfare close to the offline optimum. Extensive experiments based on real-world traces demonstrate the efficiency of the proposed online mechanism.
引用
收藏
页码:4832 / 4841
页数:10
相关论文
共 50 条
  • [41] Collaborative Computation Offloading and Resource Allocation in Satellite Edge Computing
    Wang, Ruisong
    Zhu, Weichen
    Liu, Gongliang
    Ma, Ruofei
    Zhang, Di
    Mumtaz, Shahid
    Cherkaoui, Soumaya
    [J]. 2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 5625 - 5630
  • [42] Collaborative Computation Offloading for Multi-access Edge Computing
    Yu, Shuai
    Langar, Rami
    [J]. 2019 IFIP/IEEE SYMPOSIUM ON INTEGRATED NETWORK AND SERVICE MANAGEMENT (IM), 2019, : 689 - 694
  • [43] A Minimized Latency Collaborative Computation Offloading Game Under Mobile Edge Computing for Indoor Localization
    Zamzam, Marwa
    Elshabrawy, Tallal
    Ashour, Mohamed
    [J]. IEEE ACCESS, 2021, 9 : 133861 - 133874
  • [44] SDN-Assisted Mobile Edge Computing for Collaborative Computation Offloading in Industrial Internet of Things
    Tang, Chaogang
    Zhu, Chunsheng
    Zhang, Ning
    Guizani, Mohsen
    Rodrigues, Joel J. P. C.
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (23) : 24253 - 24263
  • [45] Collaborative Computation Offloading for Mobile-Edge Computing over Fiber-Wireless Networks
    Guo, Hongzhi
    Liu, Jiajia
    Qin, Huiling
    Zhang, Haibin
    [J]. GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,
  • [46] Intelligent Task Offloading and Collaborative Computation in Multi-UAV-Enabled Mobile Edge Computing
    Jingming Xia
    Peng Wang
    Bin Li
    Zesong Fei
    [J]. China Communications, 2022, 19 (04) : 244 - 256
  • [47] Intelligent task offloading and collaborative computation in multi-UAV-enabled mobile edge computing
    Xia, Jingming
    Wang, Peng
    Li, Bin
    Fei, Zesong
    [J]. CHINA COMMUNICATIONS, 2022, 19 (04) : 244 - 256
  • [48] Energy-Efficient Computation Offloading in Collaborative Edge Computing
    Lin, Rongping
    Xie, Tianze
    Luo, Shan
    Zhang, Xiaoning
    Xiao, Yong
    Moran, Bill
    Zukerman, Moshe
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (21) : 21305 - 21322
  • [49] QoE-aware mobile computation offloading in mobile edge computing
    Sivasakthi, Dharmalingam Adhimuga
    Gunasekaran, Raja
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (11):
  • [50] Online Deep Reinforcement Learning for Computation Offloading in Blockchain-Empowered Mobile Edge Computing
    Qiu, Xiaoyu
    Liu, Luobin
    Chen, Wuhui
    Hong, Zicong
    Zheng, Zibin
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (08) : 8050 - 8062