A source term approach for generation of one-way acoustic waves in the Euler and Navier-Stokes equations

被引:14
|
作者
Maeda, Kazuki [1 ]
Colonius, Tim [1 ]
机构
[1] CALTECH, Div Engn & Appl Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Directional source modeling; Euler and Navier-Stokes equations; Direct numerical simulation; Transducer modeling; BOUNDARY-CONDITIONS; ULTRASOUND;
D O I
10.1016/j.wavemoti.2017.08.004
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We derive a volumetric source term for the Euler and Navier-Stokes equations that mimics the generation of unidirectional acoustic waves from an arbitrary smooth surface in three-dimensional space. The model is constructed as a linear combination of monopole and dipole sources in the mass, momentum, and energy equations. The singular source distribution on the surface is regularized on a computational grid by convolution with a smeared Dirac delta function. The source is implemented in the Euler equation using a Cartesian-grid finite-volume WENO scheme, and validated by comparing with analytical solution for unidirectional planar and spherical acoustic waves. Using the scheme, we emulate a spherical piezoelectric transducer and a multi-element array medical transducer to simulate focused ultrasound fields in water. The simulated ultrasound fields show favorable agreement with previous experiments. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 49
页数:14
相关论文
共 50 条
  • [21] CONVERGENCE OF EULER-STOKES SPLITTING OF THE NAVIER-STOKES EQUATIONS
    BEALE, JT
    GREENGARD, C
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (08) : 1083 - 1115
  • [22] Numerical Approach of Water Waves by Navier-Stokes Equations.
    Daubert, O.
    Cahouet, J.
    Annales des ponts et chaussees. Memoires et documents relatifs a l'art des constructions et au service de l'ingenieur, 1985, (33): : 3 - 25
  • [23] Numerical Approach of Water Waves by Navier-Stokes Equations.
    Daubert, O.
    Cahouet, J.
    Annales des ponts et chaussees. Memoires et documents relatifs a l'art des constructions et au service de l'ingenieur, 1984, (32): : 3 - 24
  • [24] A One-Way Coupled Navier-Stokes-Serre Model for Simulating the Generation and Propagation of Tsunami Waves
    Xin, Zhikang
    Shi, Yunfeng
    Zhang, Yunxing
    Zhang, Yifan
    PURE AND APPLIED GEOPHYSICS, 2024, 181 (05) : 1413 - 1426
  • [25] Boundary layer problem: Navier-Stokes equations and Euler equations
    Chemetov, N. V.
    Cipriano, F.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (06) : 2091 - 2104
  • [26] The Anisotropic Lagrangian Averaged Euler and Navier-Stokes Equations
    JERROLD E. MARSDEN
    STEVE SHKOLLER
    Archive for Rational Mechanics and Analysis, 2003, 166 : 27 - 46
  • [27] A centrifugal wave solution of the Euler and Navier-Stokes equations
    Shapiro, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2001, 52 (06): : 913 - 923
  • [28] Liouville type theorems for the Euler and the Navier-Stokes equations
    Chae, Dongho
    ADVANCES IN MATHEMATICS, 2011, 228 (05) : 2855 - 2868
  • [29] On the Euler plus Prandtl Expansion for the Navier-Stokes Equations
    Kukavica, Igor
    Nguyen, Trinh T.
    Vicol, Vlad
    Wang, Fei
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)
  • [30] Comparison of stability between Navier-Stokes and Euler equations
    Shi Wen-hui
    Wang Yue-peng
    Shen Chun
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (09) : 1257 - 1263