Adsorption and Crystallization of Particles at the Air-Water Interface Induced by Minute Amounts of Surfactant

被引:21
|
作者
Anyfantakis, Manos [1 ,2 ]
Vialetto, Jacopo [1 ]
Best, Andreas [3 ]
Auernhammer, Guenter K. [3 ,4 ]
Butt, Hans-Juergen [3 ]
Binks, Bernard P. [5 ]
Baigl, Damien [1 ]
机构
[1] Sorbonne Univ, PSL Univ, CNRS, Ecole Normale Super,Dept Chem,PASTEUR, F-75005 Paris, France
[2] Univ Luxembourg, Phys & Mat Sci Res Unit, 162a Ave Faiencerie, L-1511 Luxembourg, Luxembourg
[3] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[4] Leibniz Inst Polymer Res Dresden, Hohe Str 6, D-01069 Dresden, Germany
[5] Univ Hull, Sch Math & Phys Sci, Kingston Upon Hull HU6 7RX, N Humberside, England
关键词
COLLOIDAL PARTICLES; LATEX-PARTICLES; CONTACT-ANGLE; NANOPARTICLES; MICROSPHERES; DIFFUSION; AIR/WATER; SORPTION;
D O I
10.1021/acs.langmuir.8b03233
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Controlling the organization of particles at liquid-gas interfaces usually relies on multiphasic preparations and external applied forces. Here, we show that micromolar amounts of a conventional cationic surfactant induce, in a single step, both adsorption and crystallization of various types of nanometer- to micrometer-sized anionic particles at the air-water interface, without any additional phase involved or external forces other than gravity. Contrary to conventional surfactant-induced particle adsorption through neutralization and hydrophobization at a surfactant concentration close to the critical micellar concentration (CMG), we show that in our explored concentration regime (CMC/1000-CMC/100), particles adsorb with a low contact angle and maintain most of their charge, leading to the formation of two-dimensional assemblies with different structures, depending on surfactant (C-s) and particle (C-p) concentrations. At low C-s and C-p, particles are repulsive and form disordered assemblies. Increasing C-p in this regime increases the number of adsorbed particles, leading to the formation of mm-sized, highly ordered polycrystalline assemblies because of the long-range attraction mediated by the collective deformation of the interface. Increasing C-s decreases the particle repulsion and therefore the interparticle distance within the monocrystalline domains. A further increase in C-s (approximate to CMC/10) leads to a progressive neutralization of particles accompanied by the formation of disordered structures, ranging from densely packed amorphous ones to loosely packed gels. These results emphasize a new role of the surfactant to mediate both adsorption and crystallization of particles at liquid-gas interfaces and provide a practical manner to prepare two-dimensional ordered colloidal assemblies in a remarkably robust and convenient manner.
引用
收藏
页码:15526 / 15536
页数:11
相关论文
共 50 条
  • [41] Adsorption of pepsin in octadecylamine matrix at air-water interface
    Kamilya, Tapanendu
    Pal, Prabir
    Talapatra, G. B.
    BIOPHYSICAL CHEMISTRY, 2010, 146 (2-3) : 85 - 91
  • [42] Simple assay for adsorption of proteins to the air-water interface
    Han, Bong-Gyoon
    Glaeser, Robert M.
    JOURNAL OF STRUCTURAL BIOLOGY, 2021, 213 (04)
  • [43] Thermodynamics of iodide adsorption at the instantaneous air-water interface
    Stern, Abraham C.
    Baer, Marcel D.
    Mundy, Christopher J.
    Tobias, Douglas J.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (11):
  • [44] Adsorption of β-Lactoglobulin variants A and B to the air-water interface
    Mackie, AR
    Husband, FA
    Holt, C
    Wilde, PJ
    INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 1999, 34 (5-6): : 509 - 516
  • [45] Kinetics of protein hydration and adsorption at the air-water interface
    Shibata, A
    Iizuka, Y
    Ueno, S
    Yamashita, T
    PROTEIN ENGINEERING, 1995, 8 (09): : 59 - 59
  • [46] Adsorption behavior of DNA on phosphatidylcholine at the air-water interface
    Qu, Hongjin
    Hao, Changchun
    Zhang, Ziyi
    Xu, Zhuangwei
    Sun, Runguang
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 99 : 505 - 510
  • [47] ADSORPTION OF RIBONUCLEASE AT AIR-WATER INTERFACE AND ON PHOSPHOLIPID MONOLAYERS
    KHAIAT, A
    MILLER, IR
    BIOCHIMICA ET BIOPHYSICA ACTA, 1969, 183 (02) : 309 - +
  • [48] Effect of phospholipid on trichosanthin adsorption at the air-water interface
    Xia, XF
    Wang, F
    Sui, SF
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2001, 1515 (01): : 1 - 11
  • [49] Predicting Adsorption of Organic Chemicals at the Air-Water Interface
    Goss, Kai-Uwe
    JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (44): : 12256 - 12259
  • [50] Adsorption of DNA to octadecylamine monolayers at the air-water interface
    Lopes-Costa, Tania
    Gamez, Francisco
    Lago, Santiago
    Pedrosa, Jose M.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 354 (02) : 733 - 738