Predicting the true density of commercial biomass pellets using near-infrared hyperspectral imaging

被引:3
|
作者
Pitak, Lakkana [1 ]
Saengprachatanarug, Khwantri [1 ]
Laloon, Kittipong [1 ]
Posom, Jetsada [1 ,2 ]
机构
[1] Khon Kaen Univ, Fac Engn, Dept Agr Engn, Khon Kaen 40002, Thailand
[2] Khon Kaen Univ, Ctr Alternat Energy Res & Dev, Khon Kaen, Thailand
关键词
True density; Hyperspectral imaging; Biomass pellet; Variable selection method; SUCCESSIVE PROJECTIONS ALGORITHM; WAVELENGTH SELECTION; MOISTURE-CONTENT; HEATING VALUE; SPECTROSCOPY;
D O I
10.1016/j.aiia.2022.11.004
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The use of biomass is increasing because it is a form of renewable energy that provides high heating value. Rapid measurements could be used to check the quality of biomass pellets during production. This research aims to apply a near-infrared (NIR) hyperspectral imaging system for the evaluation of the true density of individual bio-mass pellets during the production process. Real-time measurement of the true density could be beneficial for the operation settings, such as the ratio of the binding agent to the raw material, the temperature of operation, the production rate, and the mixing ratio. The true density could also be used for rough measurement of the bulk density, which is a necessary parameter in commercial production. Therefore, knowledge of the true density is required during production in order to maintain the pellet quality as well as operation conditions. A prediction model was developed using partial least squares (PLS) regression across different wavelengths selected using different spectral pre-treatment methods and variable selection methods. After model development, the perfor-mance of the models was compared. The best model for predicting the true density of individual pellets was developed with first-derivative spectra (D1) and variables selected by the genetic algorithm (GA) method, and the number of variables was reduced from 256 to 53 wavelengths. The model gave R2cal, R2val, SEC, SEP, and RPD values of 0.88, 0.89, 0.08 g/cm3, 0.07 g/cm3, and 3.04, respectively. The optimal prediction model was applied to construct distribution maps of the true density of individual biomass pellets, with the level of the predicted values displayed in colour bars. This imaging technique could be used to check visually the true density of biomass pellets during the production process for warnings to quality control equipment.& COPY; 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:266 / 275
页数:10
相关论文
共 50 条
  • [21] Near-Infrared Imaging Using a High-Speed Monitoring Near Infrared Hyperspectral Camera (Compovision)
    Ishikawa, Daitaro
    Motomura, Asako
    Igarashi, Yoko
    Ozaki, Yukihiro
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35 (04) : 865 - 869
  • [22] Near-infrared hyperspectral imaging for grading and classification of pork
    Barbin, Douglas
    Elmasry, Gamal
    Sun, Da-Wen
    Allen, Paul
    MEAT SCIENCE, 2012, 90 (01) : 259 - 268
  • [23] Near-infrared Hyperspectral Imaging of Atherosclerotic Tissue Phantom
    Ishii, K.
    Nagao, R.
    Kitayabu, A.
    Awazu, K.
    CLINICAL AND BIOMEDICAL SPECTROSCOPY AND IMAGING III, 2013, 8798
  • [24] Fabrication and evaluation of a near-infrared hyperspectral imaging system
    Katari, S.
    Wallack, M.
    Huebschman, M.
    Pantano, P.
    Garner, H.
    JOURNAL OF MICROSCOPY, 2009, 236 (01) : 11 - 17
  • [25] Hydration of hydrogels studied by near-infrared hyperspectral imaging
    Caponigro, Vicky
    Marini, Federico
    Gowen, Aoife
    JOURNAL OF CHEMOMETRICS, 2018, 32 (01)
  • [26] Machine Learning-Based Prediction of Selected Parameters of Commercial Biomass Pellets Using Line Scan Near Infrared-Hyperspectral Image
    Pitak, Lakkana
    Laloon, Kittipong
    Wongpichet, Seree
    Sirisomboon, Panmanas
    Posom, Jetsada
    PROCESSES, 2021, 9 (02) : 1 - 15
  • [27] Gastric cancer target detection using near-infrared hyperspectral imaging with chemometrics
    Yi, Weisong
    Zhang, Jian
    Jiang, Houmin
    Zhang, Niya
    TWELFTH INTERNATIONAL CONFERENCE ON PHOTONICS AND IMAGING IN BIOLOGY AND MEDICINE (PIBM 2014), 2014, 9230
  • [28] Detection of Cracks on Tomatoes Using a Hyperspectral Near-Infrared Reflectance Imaging System
    Lee, Hoonsoo
    Kim, Moon S.
    Jeong, Danhee
    Delwiche, Stephen R.
    Chao, Kuanglin
    Cho, Byoung-Kwan
    SENSORS, 2014, 14 (10): : 18837 - 18850
  • [29] Detection of ochratoxin A contamination in stored wheat using near-infrared hyperspectral imaging
    Senthilkumar, T.
    Jayas, D. S.
    White, N. D. G.
    Fields, P. G.
    Grafenhan, T.
    INFRARED PHYSICS & TECHNOLOGY, 2017, 81 : 228 - 235
  • [30] Evaluation ofDianhongblack tea quality using near-infrared hyperspectral imaging technology
    Ren, Guangxin
    Wang, Yujie
    Ning, Jingming
    Zhang, Zhengzhu
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2021, 101 (05) : 2135 - 2142