Experimental analysis of the pore structure and fractal characteristics of different metamorphic coal based on mercury intrusion-nitrogen adsorption porosimetry

被引:141
|
作者
Han, Weibo [1 ,2 ,3 ]
Zhou, Gang [1 ,2 ,3 ,4 ]
Gao, Danhong [1 ,2 ,3 ]
Zhang, Zhixue [5 ]
Wei, Zunyi [6 ]
Wang, Hetang [7 ]
Yang, Houqin [8 ]
机构
[1] Shandong Univ Sci & Technol, Coll Min & Safety Engn, Qingdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, State Key Lab Min Disaster Prevent & Control Cofo, Qingdao 266590, Peoples R China
[3] Shandong Univ Sci & Technol, Minist Sci & Technol, Qingdao 266590, Peoples R China
[4] CSIRO, Energy Flagship, POB 883, Brisbane, Qld 4069, Australia
[5] Shandong Energy Feicheng Min Grp, Prod Technol Dept, Feicheng 271608, Peoples R China
[6] Shandong Energy Zaozhuang Min Grp, Environm Protect Technol Ctr, Zaozhuang 277899, Peoples R China
[7] China Univ Min & Technol, Sch Safety Engn, Xuzhou 221116, Jiangsu, Peoples R China
[8] Qiwu Coal Mine Shandong Energy Zaozhuang Min Grp, Weishan 277606, Peoples R China
基金
中国国家自然科学基金;
关键词
Mercury intrusion porosimetry; N-2; adsorption; Pore structure; Pore size distribution; Fractal dimensions; DUST SUPPRESSION; RESPIRABLE DUST; CH4; ADSORPTION; DEFORMED COALS; GAS-ADSORPTION; N-2; SHALE; DIMENSION; AGGLOMERATION; MICROSCOPY;
D O I
10.1016/j.powtec.2019.11.092
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The pore structure of different metamorphic coal was analyzed by mercury intrusion porosimetry and N-2 adsorption. Combined with the fractal dimension models of the Frenkel-Halsey-Hill and Menger, the pore size range of the experiment was spliced reasonably. A new pore classification scheme is put forward by fractal dimensions, revealing the pore structure and fractal characteristics of different metamorphic coal. The results suggest that pores exhibit piecewise fractal characteristics. A new pore classification scheme is put forward by piecewise fractal dimensions: I(0-2.0 nm, corresponding to D-1); II (2.0-50 nm, corresponding to D-2); III (50-2000 nm, corresponding to D-3): IV (2000-20,000 nm, corresponding to D-4); V (>20,000 nm, corresponding to D-5). It is not inconsistent with the international union of pure and applied chemistry for pore classification, which shows that the new pore classification scheme is reliable. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:386 / 398
页数:13
相关论文
共 50 条
  • [11] Pore structure and compressibility of coal matrix with elevated temperatures by mercury intrusion porosimetry
    Li, Zhentao
    Liu, Dameng
    Cai, Yidong
    Yao, Yanbin
    Wang, Hui
    ENERGY EXPLORATION & EXPLOITATION, 2015, 33 (06) : 809 - 826
  • [12] Pore Structure and Fractal Characteristics of Coal-Measure Sedimentary Rocks Using Nuclear Magnetic Resonance (NMR) and Mercury Intrusion Porosimetry (MIP)
    Zhang, Na
    Wang, Shuaidong
    Xun, Xingjian
    Wang, Huayao
    Sun, Xiaoming
    He, Manchao
    ENERGIES, 2023, 16 (09)
  • [13] MERCURY POROSIMETRY AND ITS APPLICATION TO THE ANALYSIS OF COAL PORE STRUCTURE
    SPITZER, Z
    POWDER TECHNOLOGY, 1981, 29 (01) : 177 - 186
  • [14] Pore Fractal Characteristics of Lignite at Different Temperatures Based on Mercury Intrusion Test
    Song, Yue
    Xie, Jun
    Fu, Haizheng
    Xin, Lin
    GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2019, 37 (06) : 4837 - 4844
  • [15] Pore Fractal Characteristics of Lignite at Different Temperatures Based on Mercury Intrusion Test
    Yue Song
    Jun Xie
    Haizheng Fu
    Lin Xin
    Geotechnical and Geological Engineering, 2019, 37 : 4837 - 4844
  • [16] Analysis of pore size distribution and fractal dimension in tight sandstone with mercury intrusion porosimetry
    Wang, Fuyong
    Yang, Kun
    You, Jingxi
    Lei, Xiujie
    RESULTS IN PHYSICS, 2019, 13
  • [17] Fractal and Multifractal Analysis of Pore Size Distribution in Low Permeability Reservoirs Based on Mercury Intrusion Porosimetry
    Su, Penghui
    Xia, Zhaohui
    Wang, Ping
    Ding, Wei
    Hu, Yunpeng
    Zhang, Wenqi
    Peng, Yujie
    ENERGIES, 2019, 12 (07)
  • [18] FRACTAL ANALYSIS OF PORE STRUCTURES IN LOW PERMEABILITY SANDSTONES USING MERCURY INTRUSION POROSIMETRY
    Wang, Fuyong
    Jiao, Liang
    Liu, Zhichao
    Tan, Xiqun
    Wang, Congle
    Gao, Jian
    JOURNAL OF POROUS MEDIA, 2018, 21 (11) : 1097 - 1119
  • [19] Experimental study of pore structure and fractal characteristics of pulverized intact coal and tectonic coal by low temperature nitrogen adsorption
    Wang, Zhenyang
    Cheng, Yuanping
    Qi, Yuxiao
    Wang, Ranpeng
    Wang, Liang
    Jiang, Jingyu
    POWDER TECHNOLOGY, 2019, 350 : 15 - 25
  • [20] Pore structure characteristics and permeability analysis of natural anhydrite with various water /anhydrite ratios based on mercury intrusion porosimetry
    Zeng, Lu
    Zhu, Jia-Yang
    Zhao, Yu
    Wang, Shu-Ping
    Huang, Hong
    Zhang, Jian-Xin
    Ye, Jian-Xiong
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 398