Experimental analysis of the pore structure and fractal characteristics of different metamorphic coal based on mercury intrusion-nitrogen adsorption porosimetry

被引:141
|
作者
Han, Weibo [1 ,2 ,3 ]
Zhou, Gang [1 ,2 ,3 ,4 ]
Gao, Danhong [1 ,2 ,3 ]
Zhang, Zhixue [5 ]
Wei, Zunyi [6 ]
Wang, Hetang [7 ]
Yang, Houqin [8 ]
机构
[1] Shandong Univ Sci & Technol, Coll Min & Safety Engn, Qingdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, State Key Lab Min Disaster Prevent & Control Cofo, Qingdao 266590, Peoples R China
[3] Shandong Univ Sci & Technol, Minist Sci & Technol, Qingdao 266590, Peoples R China
[4] CSIRO, Energy Flagship, POB 883, Brisbane, Qld 4069, Australia
[5] Shandong Energy Feicheng Min Grp, Prod Technol Dept, Feicheng 271608, Peoples R China
[6] Shandong Energy Zaozhuang Min Grp, Environm Protect Technol Ctr, Zaozhuang 277899, Peoples R China
[7] China Univ Min & Technol, Sch Safety Engn, Xuzhou 221116, Jiangsu, Peoples R China
[8] Qiwu Coal Mine Shandong Energy Zaozhuang Min Grp, Weishan 277606, Peoples R China
基金
中国国家自然科学基金;
关键词
Mercury intrusion porosimetry; N-2; adsorption; Pore structure; Pore size distribution; Fractal dimensions; DUST SUPPRESSION; RESPIRABLE DUST; CH4; ADSORPTION; DEFORMED COALS; GAS-ADSORPTION; N-2; SHALE; DIMENSION; AGGLOMERATION; MICROSCOPY;
D O I
10.1016/j.powtec.2019.11.092
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The pore structure of different metamorphic coal was analyzed by mercury intrusion porosimetry and N-2 adsorption. Combined with the fractal dimension models of the Frenkel-Halsey-Hill and Menger, the pore size range of the experiment was spliced reasonably. A new pore classification scheme is put forward by fractal dimensions, revealing the pore structure and fractal characteristics of different metamorphic coal. The results suggest that pores exhibit piecewise fractal characteristics. A new pore classification scheme is put forward by piecewise fractal dimensions: I(0-2.0 nm, corresponding to D-1); II (2.0-50 nm, corresponding to D-2); III (50-2000 nm, corresponding to D-3): IV (2000-20,000 nm, corresponding to D-4); V (>20,000 nm, corresponding to D-5). It is not inconsistent with the international union of pure and applied chemistry for pore classification, which shows that the new pore classification scheme is reliable. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:386 / 398
页数:13
相关论文
共 50 条
  • [1] The Fractal Characteristic Analysis of Coal Pore Structure Based on Mercury Intrusion Porosimetry
    Hao, Nai
    Wang, Yongliang
    Mao, Lingtao
    Liu, Qing
    ADVANCES IN CIVIL AND INDUSTRIAL ENGINEERING, PTS 1-4, 2013, 353-356 : 1191 - +
  • [2] Effect of disturbed coal pore structure on gas adsorption characteristics: mercury intrusion porosimetry
    Liang, Yunpei
    Sun, Wanjie
    Wu, Zhaopeng
    Mao, Shuren
    Ran, Qican
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [3] Surface fractal analysis of pore structure of tight sandstones: Comparison of different models based on mercury intrusion porosimetry
    Dou, Wenchao
    Liu, Luofu
    Xu, Zhengjian
    Wang, Mengyao
    Chen, Yiting
    Wang, Ximeng
    AAPG BULLETIN, 2021, 105 (07) : 1491 - 1509
  • [4] EXPERIMENTAL STUDY ON THE CHARACTERIZATION OF PORE STRUCTURE AND PORE FRACTAL CHARACTERISTICS OF COAL BASED ON LIQUID NITROGEN ADSORPTION
    Zhang, Ruigang
    Zeng, Chunlin
    Cheng, Jun
    Li, Changlin
    FRESENIUS ENVIRONMENTAL BULLETIN, 2020, 29 (12): : 10436 - 10445
  • [5] Study on Pore Structure and Fractal Characteristics of Tar-Rich Coal during Pyrolysis by Mercury Intrusion Porosimetry (MIP)
    Wang, Zhendong
    Jiang, Pengfei
    Yang, Fu
    Kong, Yuanyuan
    Ma, Li
    Xie, Bohan
    Duan, Zhonghui
    GEOFLUIDS, 2022, 2022
  • [6] Multiscale Fractal Characterization of Pore Structure for Coal in Different Rank Using Scanning Electron Microscopy and Mercury Intrusion Porosimetry
    Ma, Yankun
    PROCESSES, 2022, 10 (08)
  • [7] Analysis of the pore structure characteristics of freeze-thawed saline soil with different salinities based on mercury intrusion porosimetry
    Wang, Jiaqi
    Wang, Qing
    Kong, Yuanyuan
    Han, Yan
    Cheng, Shukai
    ENVIRONMENTAL EARTH SCIENCES, 2020, 79 (07)
  • [8] Analysis of the pore structure characteristics of freeze-thawed saline soil with different salinities based on mercury intrusion porosimetry
    Jiaqi Wang
    Qing Wang
    Yuanyuan Kong
    Yan Han
    Shukai Cheng
    Environmental Earth Sciences, 2020, 79
  • [9] Experimental Study on Fractal Characteristics of Adsorption Pore Structure of Coal
    Wang, Wendi
    Liu, Zhen
    Zhang, Mingrui
    Yang, He
    PROCESSES, 2023, 11 (01)
  • [10] Pore Structure Characterization of Sodium Hydroxide Activated Slag Using Mercury Intrusion Porosimetry, Nitrogen Adsorption, and Image Analysis
    Zuo, Yibing
    Ye, Guang
    MATERIALS, 2018, 11 (06):