Joint dictionary and graph learning for unsupervised feature selection

被引:8
|
作者
Ding, Dediong [1 ]
Xia, Fei [2 ,3 ]
Yang, Xiaogao [4 ]
Tang, Chang [5 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Stat, Chengdu 611130, Peoples R China
[2] Naval Univ Engn, Changsha 410073, Peoples R China
[3] NUDT, Opt Engn Postdoctoral Mobile Stn, Changsha 410073, Peoples R China
[4] Hunan Univ Arts & Sci, Coll Mech Engn, Changde 415000, Peoples R China
[5] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Unsupervised feature selection; Dictionary learning; Similarity graph learning; Local structure preservation; CLASSIFICATION; ALGORITHM;
D O I
10.1007/s10489-019-01561-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the explosion of unlabelled and high-dimensional data, unsupervised feature selection has become an critical and challenging problem in machine learning. Recently, data representation based model has been successfully deployed for unsupervised feature selection, which defines feature importance as the capability to represent original data via a reconstruction function. However, most existing algorithms conduct feature selection on original feature space, which will be affected by the noisy and redundant features of original feature space. In this paper, we investigate how to conduct feature selection on the dictionary basis space of the data, which can capture higher level and more abstract representation than original low-level representation. In addition, a similarity graph is learned simultaneously to preserve the local geometrical data structure which has been confirmed critical for unsupervised feature selection. In summary, we propose a model (referred to as DGL-UFS briefly) to integrate dictionary learning, similarity graph learning and feature selection into a uniform framework. Experiments on various types of real world datasets demonstrate the effectiveness of the proposed framework DGL-UFS.
引用
收藏
页码:1379 / 1397
页数:19
相关论文
共 50 条
  • [21] Unsupervised Feature Selection via Adaptive Graph Learning and Constraint
    Zhang, Rui
    Zhang, Yunxing
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (03) : 1355 - 1362
  • [22] Joint Adaptive Graph and Structured Sparsity Regularization for Unsupervised Feature Selection
    Sun, Zhenzhen
    Yu, Yuanlong
    arXiv, 2020,
  • [23] Robust Joint Graph Sparse Coding for Unsupervised Spectral Feature Selection
    Zhu, Xiaofeng
    Li, Xuelong
    Zhang, Shichao
    Ju, Chunhua
    Wu, Xindong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (06) : 1263 - 1275
  • [24] Dictionary learning for unsupervised feature selection via dual sparse regression
    Jian-Sheng Wu
    Jing-Xin Liu
    Jun-Yun Wu
    Wei Huang
    Applied Intelligence, 2023, 53 : 18840 - 18856
  • [25] Dictionary learning for unsupervised feature selection via dual sparse regression
    Wu, Jian-Sheng
    Liu, Jing-Xin
    Wu, Jun-Yun
    Huang, Wei
    APPLIED INTELLIGENCE, 2023, 53 (15) : 18840 - 18856
  • [26] Unsupervised feature selection via multiple graph fusion and feature weight learning
    Chang TANG
    Xiao ZHENG
    Wei ZHANG
    Xinwang LIU
    Xinzhong ZHU
    En ZHU
    Science China(Information Sciences), 2023, 66 (05) : 56 - 72
  • [27] Unsupervised feature selection via multiple graph fusion and feature weight learning
    Tang, Chang
    Zheng, Xiao
    Zhang, Wei
    Liu, Xinwang
    Zhu, Xinzhong
    Zhu, En
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (05)
  • [28] Joint adaptive manifold and embedding learning for unsupervised feature selection
    Wu, Jian-Sheng
    Song, Meng-Xiao
    Min, Weidong
    Lai, Jian-Huang
    Zheng, Wei-Shi
    PATTERN RECOGNITION, 2021, 112
  • [29] Multiple graph unsupervised feature selection
    Du, Xingzhong
    Yan, Yan
    Pan, Pingbo
    Long, Guodong
    Zhao, Lei
    SIGNAL PROCESSING, 2016, 120 : 754 - 760
  • [30] Unsupervised Feature Selection by Graph Optimization
    Zhang, Zhihong
    Bai, Lu
    Liang, Yuanheng
    Hancock, Edwin R.
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT I, 2015, 9279 : 130 - 140