Entropy analysis of integer and fractional dynamical systems

被引:85
|
作者
Machado, J. A. Tenreiro [1 ]
机构
[1] Inst Engn Porto, Dept Elect Engn, P-4200072 Oporto, Portugal
关键词
Fractional calculus; Entropy; Dynamics; Complex systems; INFORMATION-THEORY; TSALLIS ENTROPY; STATISTICS; DIFFUSION;
D O I
10.1007/s11071-010-9724-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates the adoption of entropy for analyzing the dynamics of a multiple independent particles system. Several entropy definitions and types of particle dynamics with integer and fractional behavior are studied. The results reveal the adequacy of the entropy concept in the analysis of complex dynamical systems.
引用
收藏
页码:371 / 378
页数:8
相关论文
共 50 条
  • [41] ENTROPY INCREASE IN DYNAMICAL-SYSTEMS
    GOLDSTEIN, S
    ISRAEL JOURNAL OF MATHEMATICS, 1981, 38 (03) : 241 - 256
  • [42] Logical entropy of quantum dynamical systems
    Ebrahimzadeh, Abolfazl
    OPEN PHYSICS, 2016, 14 (01): : 1 - 5
  • [43] Entropy production for open dynamical systems
    Breymann, WG
    Tel, T
    Vollmer, J
    PHYSICAL REVIEW LETTERS, 1996, 77 (14) : 2945 - 2948
  • [44] Dynamical behavior of SIR epidemic model with non-integer time fractional derivatives: A mathematical analysis
    Ahmad, Aqeel
    Farman, Muhammad
    Ahmad, M. O.
    Raza, Nauman
    Abdullah, M.
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2018, 5 (01): : 123 - 129
  • [45] On properties of the topological entropy of dynamical systems
    Vetokhin, A. N.
    MATHEMATICAL NOTES, 2013, 93 (3-4) : 373 - 381
  • [46] Logical Entropy of Fuzzy Dynamical Systems
    Markechova, Dagmar
    Riecan, Beloslav
    ENTROPY, 2016, 18 (04)
  • [47] ENTROPY FORMULAS FOR DYNAMICAL SYSTEMS WITH MISTAKES
    Rousseau, Jerome
    Varandas, Paulo
    Zhao, Yun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (12) : 4391 - 4407
  • [48] Quantum dynamical entropy of spin systems
    Miyadera, T
    Ohya, M
    REPORTS ON MATHEMATICAL PHYSICS, 2005, 56 (01) : 1 - 10
  • [49] Dynamical entropy for systems with stochastic perturbation
    Ostruszka, A
    Pakonski, P
    Slomczynski, W
    Zyczkowski, K
    PHYSICAL REVIEW E, 2000, 62 (02): : 2018 - 2029
  • [50] Topological entropy of nonautonomous dynamical systems
    Random Comput Dyn, 2-3 (205):