A spectral characterization of nonlinear normal modes

被引:32
|
作者
Cirillo, G. I. [4 ]
Mauroy, A. [1 ]
Renson, L. [2 ]
Kerschen, G. [3 ]
Sepulchre, R. [4 ]
机构
[1] Univ Liege, Dept Elect Engn & Comp Sci, Syst & Modeling Res Grp, Liege, Belgium
[2] Univ Bristol, Dept Engn Math, Bristol, Avon, England
[3] Univ Liege, Dept Aerosp & Mech Engn, Space Struct & Syst Lab S3L, Liege, Belgium
[4] Univ Cambridge, Dept Engn, Control Grp, Cambridge CB2 1PZ, England
关键词
Nonlinear normal modes; Koopman operator; Spectral; Characterization; Invariant manifolds; Parametrization; NUMERICAL COMPUTATION; SYSTEMS;
D O I
10.1016/j.jsv.2016.05.016
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper explores the relationship that exists between nonlinear normal modes (NNMs) defined as invariant manifolds in phase space and the spectral expansion of the Koopman operator. Specifically, we demonstrate that NNMs correspond to zero level sets of specific eigenfunctions of the Koopman operator. Thanks to this direct connection, a new, global parametrization of the invariant manifolds is established. Unlike the classical parametrization using a pair of state-space variables, this parametrization remains valid whenever the invariant manifold undergoes folding, which extends the computation of NNMs to regimes of greater energy. The proposed ideas are illustrated using a two degree-of-freedom system with cubic nonlinearity. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:284 / 301
页数:18
相关论文
共 50 条
  • [41] Dynamic testing of nonlinear vibrating structures using nonlinear normal modes
    Peeters, M.
    Kerschen, G.
    Golinval, J. C.
    JOURNAL OF SOUND AND VIBRATION, 2011, 330 (03) : 486 - 509
  • [42] Bayesian model updating of nonlinear systems using nonlinear normal modes
    Song, Mingming
    Renson, Ludovic
    Noel, Jean-Philippe
    Moaveni, Babak
    Kerschen, Gaetan
    STRUCTURAL CONTROL & HEALTH MONITORING, 2018, 25 (12):
  • [43] Determination of nonlinear normal modes of a planar nonlinear system with a constraint condition
    Chen, Yanhua
    Jiang, Jun
    JOURNAL OF SOUND AND VIBRATION, 2013, 332 (20) : 5151 - 5161
  • [44] Nonlinear normal modes and their bifurcations for an inertially coupled nonlinear conservative system
    Wang, FX
    Bajaj, AK
    Kamiya, K
    NONLINEAR DYNAMICS, 2005, 42 (03) : 233 - 265
  • [45] Nonlinear normal modes and optimization of a square root nonlinear energy sink
    Guo-Xu Wang
    Hu Ding
    Li-Qun Chen
    Nonlinear Dynamics, 2021, 104 : 1069 - 1096
  • [46] Nonlinear normal modes and optimization of a square root nonlinear energy sink
    Wang, Guo-Xu
    Ding, Hu
    Chen, Li-Qun
    NONLINEAR DYNAMICS, 2021, 104 (02) : 1069 - 1096
  • [47] Nonlinear Normal Modes and Their Bifurcations for an Inertially Coupled Nonlinear Conservative System
    Fengxia Wang
    Anil K. Bajaj
    Keisuke Kamiya
    Nonlinear Dynamics, 2005, 42 : 233 - 265
  • [48] A SPECTRAL CHARACTERIZATION OF MONOTONICITY PROPERTIES OF NORMAL LINEAR-OPERATORS WITH AN APPLICATION TO NONLINEAR TELEGRAPH EQUATION
    HETZER, G
    JOURNAL OF OPERATOR THEORY, 1984, 11 (02) : 333 - 341
  • [49] Intrinsic localized modes and nonlinear normal modes in micro-resonator arrays
    Dick, A. J.
    Balachandran, B.
    Mote, C. D., Jr.
    PROCEEDINGS OF THE ASME APPLIED MECHANICS DIVISION, 2005, 256 : 165 - 171
  • [50] Nonlinear normal modes of a parametrically excited cantilever beam
    Yabuno, H
    Nayfeh, AH
    NONLINEAR DYNAMICS, 2001, 25 (1-3) : 65 - 77