Quantum chaos for the vibrating rectangular billiard

被引:2
|
作者
Porter, MA [1 ]
Liboff, RL
机构
[1] Cornell Univ, Ctr Appl Math, Ithaca, NY 14850 USA
[2] Cornell Univ, Sch Elect Engn, Ithaca, NY 14850 USA
[3] Cornell Univ, Sch Appl Phys, Ithaca, NY 14850 USA
来源
关键词
D O I
10.1142/S0218127401003474
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider oscillations of the length and width in rectangular quantum billiards, a two "degree-of-vibration" configuration. We consider several superpositon states and discuss the effects of symmetry (in terms of the relative values of the quantum numbers of the superposed states) on the resulting evolution equations and derive necessary conditions for quantum chaos for both separable and inseparable potentials. We extend this analysis to n-dimensional rectangular parallelepipeds with two degrees-of-vibration. We produce several sets of Poincare maps corresponding to different projections and potentials in the two-dimensional case. Several of these display chaotic behavior. We distinguish between four types of behavior in the present system corresponding to the separability of the potential and the symmetry of the superposition states. In particular, we contrast harmonic and anharmonic potentials. We note that vibrating rectangular quantum billiards may be used as a model for quantum-well nanostructures of the stated geometry, and we observe chaotic behavior without passing to the semiclassical ((h) over bar --> 0) or high quantum-number limits.
引用
收藏
页码:2317 / 2337
页数:21
相关论文
共 50 条
  • [21] Classical and quantum chaos in the generalized parabolic lemon-shaped billiard
    Lopac, V
    Mrkonjic, I
    Radic, D
    [J]. PHYSICAL REVIEW E, 1999, 59 (01) : 303 - 311
  • [22] CLASSICAL AND QUANTUM CHAOS OF THE WEDGE BILLIARD .2. QUANTUM-MECHANICS AND QUANTIZATION RULES
    SZEREDI, T
    GOODINGS, DA
    [J]. PHYSICAL REVIEW E, 1993, 48 (05) : 3529 - 3544
  • [23] A rectangular billiard with moving slits
    Zhou, Jing
    [J]. NONLINEARITY, 2020, 33 (04) : 1542 - 1571
  • [24] MAGNETOCONDUCTANCE IN OPEN STADIUM BILLIARD - QUANTUM ANALOG OF TRANSITION FROM CHAOS TO TORI
    NAKAMURA, K
    ITO, K
    TAKANE, Y
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1994, 63 (09) : 3210 - 3213
  • [25] On the Signs of Quantum Chaos in a Scattering Billiard K System with Kinks of the Lateral Boundary
    Ganapol'skii, E. M.
    [J]. JETP LETTERS, 2012, 96 (07) : 456 - 460
  • [26] On the signs of quantum chaos in a scattering billiard K system with kinks of the lateral boundary
    E. M. Ganapol’skii
    [J]. JETP Letters, 2012, 96 : 456 - 460
  • [27] Spin chaos manifestation in a driven quantum billiard with spin-orbit coupling
    Khomitsky, D. V.
    Malyshev, A. I.
    Sherman, E. Ya.
    Di Ventra, M.
    [J]. PHYSICAL REVIEW B, 2013, 88 (19)
  • [28] Intermittency route to chaos for the nuclear billiard
    Felea, D.
    Bordeianu, C. C.
    Grossu, I. V.
    Besliu, C.
    Jipa, Al.
    Radu, A. -A.
    Stan, E.
    [J]. EPL, 2011, 93 (04)
  • [29] Particle dynamics in corrugated rectangular billiard
    Akhmadjanov, T.
    Rakhimov, E.
    Otajanov, D.
    [J]. NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2015, 6 (02): : 262 - 267
  • [30] SMALL GAPS IN THE SPECTRUM OF THE RECTANGULAR BILLIARD
    Blomer, Valentin
    Bourgain, Jean
    Radziwill, Maksym
    Rudnick, Zeev
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2017, 50 (05): : 1283 - 1300