Bimodules and g-rationality of vertex operator algebras

被引:10
|
作者
Dong, Chongying [1 ]
Jiang, Cuipo
机构
[1] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
关键词
D O I
10.1090/S0002-9947-08-04430-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the twisted representations of vertex operator algebras. Let V be a vertex operator algebra and g an automorphism of V of finite order T. For any m, n epsilon 1/TZ+, an A(g,n)(V)-A(g,m)(V)-bimodule A(g,n,m)(V) is constructed. The collection of these bimodules determines any admissible g-twisted V-module completely. A Verma type admissible g-twisted V-module is constructed naturally from any A(g,m)(V)-module. Furthermore, it is shown with the help of bimodule theory that a simple vertex operator algebra V is g-rational if and only if its twisted associative algebra Ag(V) is semisimple and each irreducible admissible g-twisted V-module is ordinary.
引用
下载
收藏
页码:4235 / 4262
页数:28
相关论文
共 50 条
  • [41] The varieties of Heisenberg vertex operator algebras
    Chu YanJun
    Lin ZongZhu
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (03) : 379 - 400
  • [42] Differential graded vertex operator algebras and their Poisson algebras
    Caradot, Antoine
    Jiang, Cuipo
    Lin, Zongzhu
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (12)
  • [43] Borwein identity and vertex operator algebras
    Kitazume, M
    Miyamoto, M
    Yamada, H
    JOURNAL OF NUMBER THEORY, 2000, 82 (01) : 100 - 108
  • [44] Induced modules for vertex operator algebras
    Dong, CY
    Lin, ZZ
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 179 (01) : 157 - 183
  • [45] Vertex operator algebras and the Verlinde conjecture
    Huang, Yi-Zhi
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (01) : 103 - 154
  • [46] Vertex operator (super)algebras and LCFT
    Adamovic, Drazen
    Milas, Antun
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (49)
  • [47] Hopf actions on vertex operator algebras
    Dong, Chongying
    Wang, Hao
    JOURNAL OF ALGEBRA, 2018, 514 : 310 - 329
  • [48] Schottky vertex operator cluster algebras
    Zuevsky, A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (17):
  • [49] Mirror Extensions of Vertex Operator Algebras
    Chongying Dong
    Xiangyu Jiao
    Feng Xu
    Communications in Mathematical Physics, 2014, 329 : 263 - 294
  • [50] Vertex operator algebras and Jacobi forms
    University of California, Santa Cruz