Let S be the class of all spaces, each of which is homeomorphic to a stationary subset of a regular uncountable cardinal (depending on the space). In this paper, we prove the following result: The product X x C of a monotonically normal space X and a compact space C is normal if and only if S x C is normal for each closed subspace S in X belonging to S. As a corollary, we obtain the following result: If the product of a monotonically normal space and a compact space is orthocompact, then it is normal. (C) 2011 Elsevier B.V. All rights reserved.
机构:
Hungarian Acad Sci, Alfred Renyi Inst Math, Realtanoda U 13-15, H-1053 Budapest, HungaryHungarian Acad Sci, Alfred Renyi Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
Juhasz, Istvan
Tkachuk, Vladimir V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Metropolitana, Dept Matemat, Av San Rafael Atlixco 186, Mexico City 09340, DF, MexicoHungarian Acad Sci, Alfred Renyi Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
Tkachuk, Vladimir V.
Wilson, Richard G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Metropolitana, Dept Matemat, Av San Rafael Atlixco 186, Mexico City 09340, DF, MexicoHungarian Acad Sci, Alfred Renyi Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
机构:
Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Prague 18675 8, Czech RepublicCharles Univ Prague, Fac Math & Phys, Dept Math Anal, Prague 18675 8, Czech Republic