Chebyshev spaces with polynomial blossoms

被引:19
|
作者
Mazure, ML [1 ]
机构
[1] Univ Grenoble 1, Lab Modelisat & Calcul, IMAG, F-38041 Grenoble, France
关键词
blossoming; Chebyshev spaces; geometric design; degree elevation; subdivision; shape parameters;
D O I
10.1023/A:1018995019439
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The use of extended Chebyshev spaces in geometric design is motivated by the interesting shape parameters they provide. Unfortunately the algorithms such spaces lead to are generally complicated because the blossoms themselves are complicated. In order to make up for this inconvenience, we here investigate particular extended Chebyshev spaces, containing the constants and power functions whose exponents are consecutive positive integers. We show that these spaces lead to simple algorithms due to the fact that the blossoms are polynomial functions. Furthermore, we also describe an elegant dimension elevation algorithm which makes it possible to return to polynomial spaces and therefore to use all the classical algorithms for polynomials.
引用
收藏
页码:219 / 238
页数:20
相关论文
共 50 条
  • [31] On the filtered polynomial interpolation at Chebyshev nodes
    Occorsio, Donatella
    Themistoclakis, Woula
    APPLIED NUMERICAL MATHEMATICS, 2021, 166 : 272 - 287
  • [32] Generalizations of chebyshev polynomials and polynomial mappings
    Chen, Yang
    Griffin, James
    Ismail, Mourad E. H.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (10) : 4787 - 4828
  • [33] On Bernstein Inequality via Chebyshev Polynomial
    Yi C. Huang
    Computational Methods and Function Theory, 2023, 23 : 417 - 419
  • [34] Interpolation by weak Chebyshev spaces
    Davydov, O
    Sommer, M
    JOURNAL OF APPROXIMATION THEORY, 2000, 102 (02) : 243 - 262
  • [35] Chebyshev sets in geodesic spaces
    Ariza-Ruiz, David
    Fernandez-Leon, Aurora
    Lopez-Acedo, Genaro
    Nicolae, Adriana
    JOURNAL OF APPROXIMATION THEORY, 2016, 207 : 265 - 282
  • [36] Chebyshev Spaces and Bernstein Bases
    Marie-Laurence Mazure
    Constructive Approximation , 2005, 22 : 347 - 363
  • [37] On ω-Chebyshev subspaces in Banach spaces
    Shams, Maram
    Mazaheri, Hamid
    Vaezpour, Sayed Mansour
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (03) : 601 - 606
  • [38] Extended Chebyshev spaces in rationality
    Mazure, Marie-Laurence
    BIT NUMERICAL MATHEMATICS, 2013, 53 (04) : 1013 - 1045
  • [39] ON CHEBYSHEV CENTERS IN METRIC SPACES
    Narang, T. D.
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2019, 106 (120): : 47 - 51
  • [40] POLYNOMIAL SPACES
    GODSIL, CD
    DISCRETE MATHEMATICS, 1989, 73 (1-2) : 71 - 88