l0 Sparse Approximation of Coastline Inflection Method on FY-3C MWRI Data

被引:6
|
作者
Li, Weifu [1 ,2 ]
Luo, Zhicheng [1 ,2 ]
Liu, Chengbo [3 ]
Liu, Jiazheng [4 ]
Shen, Lijun [4 ]
Xie, Qiwei [5 ]
Han, Hua [4 ]
Yang, Lei [3 ]
机构
[1] Hubei Univ, Fac Math & Stat, Wuhan 430062, Hubei, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[3] China Meteorol Adm, Natl Satellite Meteorol Ctr, Beijing 100081, Peoples R China
[4] Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
[5] Beijing Univ Technol, Data Min Lab, Beijing 100124, Peoples R China
基金
美国国家科学基金会;
关键词
Coastline inflection method (CIM); FengYun-3C (FY-3C); geolocation; l(0) sparse; microwave radiation imager (MWRI); ACCURACY;
D O I
10.1109/LGRS.2018.2867738
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The microwave radiation imager (MWRI) located onboard the FengYun-3C (FY-3C) satellite provides a considerable amount of critical information for numerical weather predictions. Obtaining accurate geolocation results from the FY-3C MWRI data is of great importance. In this letter, we improve the traditional coastline inflection method (CIM) and propose an l(0) sparse approximation model for geolocation error estimation and correction. Specifically, we propose using the jump point of the step function to estimate the true coastline point. This approach can characterize the geolocation errors more accurately than the CIM, which further improves the geolocation accuracy. In the theoretical part, we provide a complete solution to obtain the step function through an iterative blind deconvolution. For a practical use, we demonstrate the effectiveness of the proposed method for geolocation error estimation through quantitative results obtained on the FY-3C MWRI data. The experimental results show that the proposed method can achieve an improvement of up to 33.33% in the standard deviation of geolocation errors (approximately 0.00030) compared to the traditional CIM (approximately 0.00045). Furthermore, we also apply the proposed method to the FY-3C satellite and improve the geolocation accuracy of the MWRI data through geolocation error correction.
引用
收藏
页码:85 / 89
页数:5
相关论文
共 50 条
  • [31] A scalable surrogate L0 sparse regression method for generalized linear models with applications to large scale data
    Li, Ning
    Peng, Xiaoling
    Kawaguchi, Eric
    Suchard, Marc A.
    Li, Gang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 213 : 262 - 281
  • [32] DATA ASSIMILATION USING MWHTS ONBOARD FY-3C SATELLITE FOR TYPHOON CASE
    Li, Na
    Zhang, Shengwei
    He, Jieying
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 7536 - 7539
  • [33] Sparse Inverse Covariance Estimation with L0 Penalty for Network Construction with Omics Data
    Liu, Zhenqiu
    Lin, Shili
    Deng, Nan
    McGovern, Dermot P. B.
    Piantadosi, Steven
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2016, 23 (03) : 192 - 202
  • [34] SPARSE k-MEANS WITH l∞/l0 PENALTY FOR HIGH-DIMENSIONAL DATA CLUSTERING
    Chang, Xiangyu
    Wang, Yu
    Li, Rongjian
    Xu, Zongben
    STATISTICA SINICA, 2018, 28 (03) : 1265 - 1284
  • [35] A New Geolocation Error Estimation Method in MWRI Data Aboard FY3 Series Satellites
    Li, Weifu
    Zhao, Xinghui
    Peng, Jiangtao
    Luo, Zhicheng
    Shen, Lijun
    Han, Hua
    Zhang, Peng
    Yang, Lei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (02) : 197 - 201
  • [36] Consistent Calibration of VIRR Reflective Solar Channels Onboard FY-3A, FY-3B, and FY-3C Using a Multisite Calibration Method
    Wang, Ling
    Hu, Xiuqing
    Chen, Lin
    He, Lingli
    REMOTE SENSING, 2018, 10 (09)
  • [37] Combining Snow Depth From FY-3C and In Situ Data Over the Tibetan Plateau Using a Nonlinear Analysis Method
    Feng, Aixia
    Gao, Feng
    Wang, Qiguang
    Feng, Aiqing
    Zhang, Qiang
    Shi, Yan
    Gong, Zhiqiang
    Feng, Guolin
    Zhao, Yufei
    FRONTIERS IN PHYSICS, 2021, 9 (09):
  • [38] Validation of Preliminary Results of Thermal Tropopause Derived from FY-3C GNOS Data
    Liu, Ziyan
    Sun, Yueqiang
    Bai, Weihua
    Xia, Junming
    Tan, Guangyuan
    Cheng, Cheng
    Du, Qifei
    Wang, Xianyi
    Zhao, Danyang
    Tian, Yusen
    Meng, Xiangguang
    Liu, Congliang
    Cai, Yuerong
    Wang, Dongwei
    REMOTE SENSING, 2019, 11 (09)
  • [39] Three-dimensional potential field data inversion with L0 quasinorm sparse constraints
    Meng, Zhaohai
    GEOPHYSICAL PROSPECTING, 2018, 66 (03) : 626 - 646
  • [40] Sparse smooth group L0°L1/2 regularization method for convolutional neural networks
    Quasdane, Mohamed
    Ramchoun, Hassan
    Masrour, Tawfik
    KNOWLEDGE-BASED SYSTEMS, 2024, 284