l0 Sparse Approximation of Coastline Inflection Method on FY-3C MWRI Data

被引:6
|
作者
Li, Weifu [1 ,2 ]
Luo, Zhicheng [1 ,2 ]
Liu, Chengbo [3 ]
Liu, Jiazheng [4 ]
Shen, Lijun [4 ]
Xie, Qiwei [5 ]
Han, Hua [4 ]
Yang, Lei [3 ]
机构
[1] Hubei Univ, Fac Math & Stat, Wuhan 430062, Hubei, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[3] China Meteorol Adm, Natl Satellite Meteorol Ctr, Beijing 100081, Peoples R China
[4] Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
[5] Beijing Univ Technol, Data Min Lab, Beijing 100124, Peoples R China
基金
美国国家科学基金会;
关键词
Coastline inflection method (CIM); FengYun-3C (FY-3C); geolocation; l(0) sparse; microwave radiation imager (MWRI); ACCURACY;
D O I
10.1109/LGRS.2018.2867738
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The microwave radiation imager (MWRI) located onboard the FengYun-3C (FY-3C) satellite provides a considerable amount of critical information for numerical weather predictions. Obtaining accurate geolocation results from the FY-3C MWRI data is of great importance. In this letter, we improve the traditional coastline inflection method (CIM) and propose an l(0) sparse approximation model for geolocation error estimation and correction. Specifically, we propose using the jump point of the step function to estimate the true coastline point. This approach can characterize the geolocation errors more accurately than the CIM, which further improves the geolocation accuracy. In the theoretical part, we provide a complete solution to obtain the step function through an iterative blind deconvolution. For a practical use, we demonstrate the effectiveness of the proposed method for geolocation error estimation through quantitative results obtained on the FY-3C MWRI data. The experimental results show that the proposed method can achieve an improvement of up to 33.33% in the standard deviation of geolocation errors (approximately 0.00030) compared to the traditional CIM (approximately 0.00045). Furthermore, we also apply the proposed method to the FY-3C satellite and improve the geolocation accuracy of the MWRI data through geolocation error correction.
引用
收藏
页码:85 / 89
页数:5
相关论文
共 50 条
  • [1] lp-ICP Coastline Inflection Method for Geolocation Error Estimation in FY-3 MWRI Data
    Zhao, Xinghui
    Chen, Na
    Li, Weifu
    Peng, Jiangtao
    Shen, Lijun
    REMOTE SENSING, 2019, 11 (16)
  • [2] INSTRUMENT PERFORMANCE AND CROSS CALIBRATION OF FY-3C MWRI
    Wu, Shengli
    Chen, Jie
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 388 - 391
  • [3] FY-3C MWRI在轨交叉辐射定标
    曾子倩
    蒋耿明
    遥感技术与应用, 2021, (03) : 682 - 691
  • [4] The inversion and quality validation of FY-3C MWRI sea surface temperature
    Zhang M.
    Wang S.
    Qin D.
    Qiu H.
    Tang S.
    Yaogan Xuebao/Journal of Remote Sensing, 2018, 22 (05): : 713 - 722
  • [5] Arctic Thin Ice Detection Using AMSR2 and FY-3C MWRI Radiometer Data
    Makynen, Marko
    Simila, Markku
    REMOTE SENSING, 2024, 16 (09)
  • [6] ASSESSMENT OF PASSIVE MICROWAVE SNOW COVER MAPPING METHODS FROM FY-3C/MWRI DATA IN CHINA
    Liu, Xiaojing
    Jiang, Lingmei
    Hao, Shirui
    Wang, Gongxue
    Yang, Jianwei
    Chen, Zhizhong
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5085 - 5088
  • [7] Assessment of Methods for Passive Microwave Snow Cover Mapping Using FY-3C/MWRI Data in China
    Liu, Xiaojing
    Jiang, Lingmei
    Wu, Shengli
    Hao, Shirui
    Wang, Gongxue
    Yang, Jianwei
    REMOTE SENSING, 2018, 10 (04):
  • [8] FY-3B与FY-3C/MWRI交叉定标及雪深算法应用
    王功雪
    蒋玲梅
    武胜利
    刘晓敬
    郝诗睿
    遥感技术与应用, 2017, 32 (01) : 49 - 56
  • [9] A bias correction method for FY-3C VIRR SST data
    Liao, Zhihong
    Dong, Qing
    Xue, Cunjin
    REMOTE SENSING LETTERS, 2017, 8 (05) : 429 - 437
  • [10] 基于FY-3C MWRI数据的南极海冰密集度反演
    康健强
    王星东
    李国应
    河南科技, 2019, (14) : 147 - 149