ON SEMISTAR NAGATA RINGS, PRUFER-LIKE DOMAINS AND SEMISTAR GOING-DOWN DOMAINS

被引:0
|
作者
Dobbs, David E. [1 ]
Sahandi, Parviz [2 ,3 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Univ Tabriz, Dept Math, Tabriz, Iran
[3] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
来源
HOUSTON JOURNAL OF MATHEMATICS | 2011年 / 37卷 / 03期
关键词
Semistar operation; integral domain; star-Nagata ring; star-treed domain; contraction map; star-quasi-Prufer domain; star-Noetherian; star-dimension; 1; P star MD; star-GD domain; Prufer domain; treed domain; going-down domain; Noetherian domain; KRONECKER FUNCTION RINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let star be a semistar operation on a domain D. Then the semistar Nagata ring Na(D,star) is a treed domain double left right arrow D is (star) over tilde -treed and the contraction map Spec(Na(D,star)) -> QSpec((star) over tilde)(D) boolean OR {0} is a bijection double left right arrow D is (star) over tilde -treed and (star) over tilde -quasi-Prufer domain. Consequently, if D is a (star) over tilde -Noetherian domain but not a field, then D is (star) over tilde -treed if and only if (star) over tilde -dim(D) = 1. The ring Na(D,star) is a going-down domain if and only if D is (star) over tilde -GD domain and (star) over tilde -quasi-Prufer domain. In general, D is a P star MD double left right arrow Na(D,star) is an integrally closed treed domain double left right arrow Na(D,star) is an integrally closed going-down domain. If P is a quasi-star-prime ideal of D, an induced stable semistar operation of finite type, star/P, is defined on D/P. The associated Nagata rings satisfy Na(D/P,star/P) congruent to Na (D,star)/P Na(D,star). If D is a P star MD (resp., a (star) over tilde -Noetherian domain; resp., a star-Dedekind domain; resp., a (star) over tilde -GD domain), then D/P is a P(star/P)MD (resp., a (star/P)-Noetherian domain; resp., a (star/P)-Dedekind domain; resp., a (star/P)-GD domain).
引用
收藏
页码:715 / 731
页数:17
相关论文
共 50 条