Multiple Datasets Collaborative Analysis for Hyperspectral Band Selection

被引:3
|
作者
Shi, Jiao [1 ]
Zhang, Xi [1 ]
Tan, Chunhui [1 ]
Lei, Yu [1 ]
Li, Na [1 ]
Zhou, Deyun [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710072, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Collaboration; Statistics; Sociology; Task analysis; Hyperspectral imaging; Optimization; Multitasking; Band selection; collaborative analysis; evolutionary multitasking optimization; hyperspectral images (HSIs); multiple datasets;
D O I
10.1109/LGRS.2021.3126762
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Traditional band selection methods only analyze one dataset at a time and start searching band subsets from the zero ground state of knowledge, which cannot effectively mine spectral information to guide band selection. However, for hyperspectral images (HSIs) obtained by the same sensor, the spectral information has a similar physical meaning (radiance or reflectivity). Collaborative analysis technology can analyze multiple hyperspectral datasets to explore the inherent spectral features shared among them. In this letter, a multiple datasets collaborative analysis framework for hyperspectral band selection is proposed to realize spectral information communication, thereby guiding and promoting the band selection of each dataset. Different band selection tasks are established pertinently, and then, the evolutionary multitasking band selection method is designed to facilitate the knowledge sharing of different band selection tasks. More importantly, the interaction mechanism among different datasets is adjusted dynamically, thereby improving the cooperation ability of the collaborative analysis framework. Besides, a predominant gene reservation crossover and a deduplication mutation are designed for retaining the promising bands and avoiding the selection of repeat bands. Experiments indicate that the proposed collaborative analysis method works more efficiently than the comparison methods and successfully enhances accuracy and convergence compared to single dataset analysis.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] FAST BAND SELECTION FOR HYPERSPECTRAL IMAGERY
    Yang, He
    Du, Qian
    2011 IEEE 17TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2011, : 1048 - 1051
  • [22] Effects of band selection on the hyperspectral classification
    Andreou, Charoula
    Karathanassi, Vassilia
    Diamantopoulou, Georgia
    IMAGING SPECTROMETRY XVIII, 2013, 8870
  • [23] DYNAMIC BAND SELECTION FOR HYPERSPECTRAL IMAGERY
    Liu, Keng-Hao
    Chang, Chein-I
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 2365 - 2368
  • [24] Morphological Band Selection for Hyperspectral Imagery
    Wang, Jingyu
    Wang, Xianyu
    Zhang, Ke
    Madani, Kurosh
    Sabourin, Christophe
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (08) : 1259 - 1263
  • [25] Hyperspectral Band Selection for Human Detection
    Uto, Kuniaki
    Kosugi, Yukio
    Murase, Toru
    Takagishi, Sigenori
    2012 IEEE 7TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2012, : 501 - 504
  • [26] Band selection based on band clustering for hyperspectral imagery
    Ge, Liang
    Wang, Bin
    Zhang, Liming
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2012, 24 (11): : 1447 - 1454
  • [27] Exemplar Component Analysis: A Fast Band Selection Method for Hyperspectral Imagery
    Sun, Kang
    Geng, Xiurui
    Ji, Luyan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (05) : 998 - 1002
  • [28] Band selection using independent component analysis for hyperspectral image processing
    Du, HT
    Qi, HR
    Wang, XL
    Ramanath, R
    Snyder, WE
    32ND APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, PROCEEDINGS, 2004, : 93 - 98
  • [29] Similarity-Based Unsupervised Band Selection for Hyperspectral Image Analysis
    Du, Qian
    Yang, He
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (04) : 564 - 568
  • [30] Independent component analysis-based band selection for hyperspectral imagery
    He, Yuanlei
    Liu, Daizhi
    Wang, Jingli
    Yi, Shihua
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2012, 41 (03): : 818 - 824