Development and evaluation of a deep learning model for protein-ligand binding affinity prediction

被引:354
|
作者
Stepniewska-Dziubinska, Marta M. [1 ]
Zielenkiewicz, Piotr [1 ,2 ]
Siedlecki, Pawel [1 ,2 ]
机构
[1] Polish Acad Sci, Inst Biochem & Biophys, PL-02106 Warsaw, Poland
[2] Univ Warsaw, Inst Expt Plant Biol & Biotechnol, Dept Syst Biol, PL-02096 Warsaw, Poland
关键词
DRUG DISCOVERY; NNSCORE;
D O I
10.1093/bioinformatics/bty374
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Structure based ligand discovery is one of the most successful approaches for augmenting the drug discovery process. Currently, there is a notable shift towards machine learning (ML) methodologies to aid such procedures. Deep learning has recently gained considerable attention as it allows the model to 'learn' to extract features that are relevant for the task at hand. Results: We have developed a novel deep neural network estimating the binding affinity of ligand-receptor complexes. The complex is represented with a 3D grid, and the model utilizes a 3D convolution to produce a feature map of this representation, treating the atoms of both proteins and ligands in the same manner. Our network was tested on the CASF-2013 'scoring power' benchmark and Astex Diverse Set and outperformed classical scoring functions.
引用
收藏
页码:3666 / 3674
页数:9
相关论文
共 50 条
  • [31] Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction
    Cang, Zixuan
    Wei, Guo-Wei
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2018, 34 (02)
  • [32] Surface-based multimodal protein-ligand binding affinity prediction
    Xu, Shiyu
    Shen, Lian
    Zhang, Menglong
    Jiang, Changzhi
    Zhang, Xinyi
    Xu, Yanni
    Liu, Juan
    Liu, Xiangrong
    BIOINFORMATICS, 2024, 40 (07)
  • [33] Dowker complex based machine learning (DCML) models for protein-ligand binding affinity prediction
    Liu, Xiang
    Feng, Huitao
    Wu, Jie
    Xia, Kelin
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (04)
  • [34] Protein-ligand binding affinity prediction based on profiles of intermolecular contacts
    Wang, Debby D.
    Chan, Moon-Tong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 1088 - 1096
  • [35] EQUIBIND: A geometric deep learning-based protein-ligand binding prediction method
    Li, Yuze
    Li, Li
    Wang, Shuang
    Tang, Xiaowen
    DRUG DISCOVERIES AND THERAPEUTICS, 2023, 17 (05): : 363 - 364
  • [36] Ensemble of local and global information for Protein-Ligand Binding Affinity Prediction
    Li, Gaili
    Yuan, Yongna
    Zhang, Ruisheng
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2023, 107
  • [37] Protein-ligand binding affinity prediction with edge awareness and supervised attention
    Gu, Yuliang
    Zhang, Xiangzhou
    Xu, Anqi
    Chen, Weiqi
    Liu, Kang
    Wu, Lijuan
    Mo, Shenglong
    Hu, Yong
    Liu, Mei
    Luo, Qichao
    ISCIENCE, 2023, 26 (01)
  • [38] Protein-ligand binding affinity prediction exploiting sequence constituent homology
    Abdel-Rehim, Abbi
    Orhobor, Oghenejokpeme
    Hang, Lou
    Ni, Hao
    King, Ross D.
    BIOINFORMATICS, 2023, 39 (08)
  • [39] Neural networks prediction of the protein-ligand binding affinity with circular fingerprints
    Yin, Zuode
    Song, Wei
    Li, Baiyi
    Wang, Fengfei
    Xie, Liangxu
    Xu, Xiaojun
    TECHNOLOGY AND HEALTH CARE, 2023, 31 : S487 - S495
  • [40] A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design
    Limbu, Sarita
    Dakshanamurthy, Sivanesan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (22)