Overdispersed and underdispersed Poisson generalizations

被引:48
|
作者
del Castillo, J
Pérez-Casany, M
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Bellaterra, Cerdanyola Vall, Spain
[2] Univ Politecn Catalunya, Dpt Matemat Applicada 2, E-08028 Barcelona, Spain
关键词
exponential models; Stochastic orders; weighted distributions; index of dispersion; zero-inflated distributions;
D O I
10.1016/j.jspi.2004.04.019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a wide set of statistical models that extend the Poisson distribution. These models are obtained through weighted versions of the Poisson family and can be approximated by a log-linear model. Under general conditions, we prove that the new models contain overdispersed and underdispersed distributions and that they can be parametrized with the mean and variance. A classical data set is analyzed to show the usefulness of the new models. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:486 / 500
页数:15
相关论文
共 50 条
  • [31] Discrete Extension of Poisson Distribution for Overdispersed Count Data: Theory and Applications
    Eliwa, Mohamed S.
    Ahsan-ul-Haq, Muhammad
    Almohaimeed, Amani
    Al-Bossly, Afrah
    El-Morshedy, Mahmoud
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [32] A simple and useful regression model for underdispersed count data based on Bernoulli–Poisson convolution
    Marcelo Bourguignon
    Diego I. Gallardo
    Rodrigo M. R. Medeiros
    Statistical Papers, 2022, 63 : 821 - 848
  • [33] Efficiency lost by analyzing counts rather than event times in Poisson and overdispersed Poisson regression models
    Dean, CB
    Balshaw, R
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) : 1387 - 1398
  • [34] A NEURAL NETWORK BOOSTED DOUBLE OVERDISPERSED POISSON CLAIMS RESERVING MODEL
    Gabrielli, Andrea
    ASTIN BULLETIN-THE JOURNAL OF THE INTERNATIONAL ACTUARIAL ASSOCIATION, 2020, 50 (01) : 25 - 60
  • [35] Modeling count response data in phytopathology: Beyond the overdispersed Poisson model
    Perez-Hernandez, Oscar
    Esker, Paul
    PHYTOPATHOLOGY, 2018, 108 (12) : 33 - 33
  • [36] BAYESIAN-ANALYSIS OF 2 OVERDISPERSED POISSON REGRESSION-MODELS
    SCOLLNIK, DPM
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (11) : 2901 - 2918
  • [37] GENERALIZATIONS OF CLASSICAL POISSON BRACKETS TO INCLUDE SPIN
    YANG, KH
    HIRSCHFELDER, JO
    PHYSICAL REVIEW A, 1980, 22 (05): : 1814 - 1816
  • [38] On the higher-order generalizations of Poisson structures
    deAzcarraga, JA
    Izquierdo, JM
    Bueno, JCP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (18): : L607 - L616
  • [39] Formal duality and generalizations of the Poisson summation formula
    Cohn, Henry
    Kumar, Abhinav
    Reiher, Christian
    Schuermann, Achill
    DISCRETE GEOMETRY AND ALGEBRAIC COMBINATORICS, 2014, 625 : 123 - 140
  • [40] Poisson XRani Distribution: An Alternative Discrete Distribution for Overdispersed Count Data
    Borbye, Seth
    Nasiru, Suleman
    Ajongba, Kingsley Kuwubasamni
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2024, 2024