Overdispersed and underdispersed Poisson generalizations

被引:48
|
作者
del Castillo, J
Pérez-Casany, M
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Bellaterra, Cerdanyola Vall, Spain
[2] Univ Politecn Catalunya, Dpt Matemat Applicada 2, E-08028 Barcelona, Spain
关键词
exponential models; Stochastic orders; weighted distributions; index of dispersion; zero-inflated distributions;
D O I
10.1016/j.jspi.2004.04.019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a wide set of statistical models that extend the Poisson distribution. These models are obtained through weighted versions of the Poisson family and can be approximated by a log-linear model. Under general conditions, we prove that the new models contain overdispersed and underdispersed distributions and that they can be parametrized with the mean and variance. A classical data set is analyzed to show the usefulness of the new models. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:486 / 500
页数:15
相关论文
共 50 条
  • [1] A hyper-Poisson regression model for overdispersed and underdispersed count data
    Saez-Castillo, A. J.
    Conde-Sanchez, A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 61 : 148 - 157
  • [2] Bayesian Conway-Maxwell-Poisson regression models for overdispersed and underdispersed counts
    Huang, A.
    Kim, A. S. I.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (13) : 3094 - 3105
  • [3] Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued autoregressive processes
    Yang, Kai
    Kang, Yao
    Wang, Dehui
    Li, Han
    Diao, Yajing
    METRIKA, 2019, 82 (07) : 863 - 889
  • [4] Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued GARCH models
    Zhu, Fukang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 58 - 71
  • [5] Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued autoregressive processes
    Kai Yang
    Yao Kang
    Dehui Wang
    Han Li
    Yajing Diao
    Metrika, 2019, 82 : 863 - 889
  • [6] Flexible models for overdispersed and underdispersed count data
    Cahoy, Dexter
    Di Nardo, Elvira
    Polito, Federico
    STATISTICAL PAPERS, 2021, 62 (06) : 2969 - 2990
  • [7] Flexible models for overdispersed and underdispersed count data
    Dexter Cahoy
    Elvira Di Nardo
    Federico Polito
    Statistical Papers, 2021, 62 : 2969 - 2990
  • [8] CONWAY-MAXWELL-POISSON AUTOREGRESSIVE MOVING AVERAGE MODEL FOR EQUIDISPERSED, UNDERDISPERSED, AND OVERDISPERSED COUNT DATA
    Melo, Moizes
    Alencar, Airlane
    JOURNAL OF TIME SERIES ANALYSIS, 2020, 41 (06) : 830 - 857
  • [9] A Time-Series Model for Underdispersed or Overdispersed Counts
    MacDonald, Iain L.
    Bhamani, Feroz
    AMERICAN STATISTICIAN, 2020, 74 (04): : 317 - 328
  • [10] Flexible INAR(1) models for equidispersed, underdispersed or overdispersed counts
    Kang, Yao
    Wang, Dehui
    Lu, Feilong
    Wang, Shuhui
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (04) : 1268 - 1301