Improvements on the hybrid Monte Carlo algorithms for matrix computations

被引:0
|
作者
Fathi-Vajargah, Behrouz [1 ]
Hassanzadeh, Zeinab [2 ]
机构
[1] Univ Guilan, Fac Math Sci, Dept Stat, POB 41335-19141, Rasht, Iran
[2] Univ Guilan, Fac Math Sci, Dept Appl Math, POB 41335-19141, Rasht, Iran
关键词
System of linear algebraic equations; Markov chain Monte Carlo; convergence analysis; transition probability; matrix inversion;
D O I
10.1007/s12046-018-0983-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present some improvements on the Markov chain Monte Carlo and hybrid Markov chain Monte Carlo algorithms for matrix computations. We discuss the convergence of the Monte Carlo method using the Ulam-von Neumann approach related to selecting the transition probability matrix. Specifically, we show that if the norm of the iteration matrix T is less than 1 then the Monte Carlo Almost Optimal method is convergent. Moreover, we suggest a new technique to approximate the inverse of the strictly diagonally dominant matrix and we exert some modifications and corrections on the hybrid Monte Carlo algorithm to obtain the inverse matrix in general. Finally, numerical experiments are discussed to illustrate the efficiency of the theoretical results.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Improvements on the hybrid Monte Carlo algorithms for matrix computations
    Behrouz Fathi-Vajargah
    Zeinab Hassanzadeh
    [J]. Sādhanā, 2019, 44
  • [2] Parallel hybrid Monte Carlo algorithms for matrix computations
    Alexandrov, V
    Atanassov, E
    Dimov, I
    Branford, S
    Thandavan, A
    Weihrauch, C
    [J]. COMPUTATIONAL SCIENCE - ICCS 2005, PT 3, 2005, 3516 : 752 - 759
  • [3] Towards Monte Carlo preconditioning approach and hybrid Monte Carlo algorithms for Matrix Computations
    Alexandrov, Vassil
    Esquivel-Flores, Oscar A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (11) : 2709 - 2718
  • [4] A sparse parallel hybrid Monte Carlo algorithm for matrix computations
    Branford, S
    Weihrauch, C
    Alexandrov, V
    [J]. COMPUTATIONAL SCIENCE - ICCS 2005, PT 3, 2005, 3516 : 743 - 751
  • [5] On Monte Carlo and Quasi-Monte Carlo for Matrix Computations
    Alexandrov, Vassil
    Davila, Diego
    Esquivel-Flores, Oscar
    Karaivanova, Aneta
    Gurov, Todor
    Atanassov, Emanouil
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 249 - 257
  • [6] Monte Carlo methods for matrix computations on the grid
    Branford, S.
    Sahin, C.
    Thandavan, A.
    Weihrauch, C.
    Alexandrov, V. N.
    Dimov, I. T.
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2008, 24 (06): : 605 - 612
  • [7] Backpropagation and Monte Carlo algorithms for neural network computations
    Junczys, R
    Wit, R
    [J]. ACTA PHYSICA POLONICA B, 1996, 27 (09): : 2265 - 2274
  • [8] Efficient parallel Monte Carlo methods for matrix computations
    Alexandrov, VN
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 113 - 122
  • [9] Enhancing Monte Carlo Preconditioning Methods for Matrix Computations
    Strassburg, Janko
    Alexandrov, Vassil
    [J]. 2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2014, 29 : 1580 - 1589
  • [10] Hybrid algorithms in quantum Monte Carlo
    Kim, Jeongnim
    Esler, Kenneth P.
    McMinis, Jeremy
    Morales, Miguel A.
    Clark, Bryan K.
    Shulenburger, Luke
    Ceperley, David M.
    [J]. IUPAP C20 CONFERENCE ON COMPUTATIONAL PHYSICS (CCP 2011), 2012, 402