Classifying 2-groups by coclass

被引:27
|
作者
Newman, MF [1 ]
O'Brien, EA
机构
[1] Australian Natl Univ, Sch Math Sci, Canberra, ACT 0200, Australia
[2] Univ Auckland, Dept Math, Auckland, New Zealand
关键词
p-groups; pro-p-groups; coclass;
D O I
10.1090/S0002-9947-99-02124-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Now that the conjectures of Leedham-Green and Newman have been proved, we probe deeper into the classification of p-groups using coclass. We determine the pro-a-groups of coclass at most 3 and use these to classify the a-groups of coclass at most 3 into families. Using extensive computational evidence; we make some detailed conjectures about the structure of these families. We also conjecture that the a-groups of arbitrary fixed coclass exhibit similar behaviour.
引用
下载
收藏
页码:131 / 169
页数:39
相关论文
共 50 条
  • [41] Fuchs' problem for 2-groups
    Swartz, Eric
    Werner, Nicholas J.
    JOURNAL OF ALGEBRA, 2020, 556 : 225 - 245
  • [42] CHARACTERISTIC PAIRS FOR 2-GROUPS
    GOMI, K
    JOURNAL OF ALGEBRA, 1985, 94 (02) : 488 - 510
  • [43] Description of a Class of 2-Groups
    Tatjana Gramushnjak
    Peeter Puusemp
    Journal of Nonlinear Mathematical Physics, 2006, 13 (Suppl 1) : 55 - 65
  • [44] Measurable categories and 2-groups
    Crane, L
    Yetter, DN
    APPLIED CATEGORICAL STRUCTURES, 2005, 13 (5-6) : 501 - 516
  • [45] ON COHOMOLOGY OF FINITE 2-GROUPS
    JOHNSON, DL
    INVENTIONES MATHEMATICAE, 1969, 7 (02) : 159 - &
  • [46] Description of a class of 2-groups
    Gramushnjak, Tatjana
    Puusemp, Peeter
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2006, 13 : 55 - 65
  • [47] NOETHER 2-GROUPS ARE FINITE
    KEGEL, OH
    MONATSHEFTE FUR MATHEMATIK, 1967, 71 (05): : 424 - &
  • [48] The neighbourhood of dihedral 2-groups
    Bálek, M
    Drápal, A
    Zhukavets, N
    ACTA APPLICANDAE MATHEMATICAE, 2005, 85 (1-3) : 25 - 33
  • [49] DIFFERENCE SETS IN 2-GROUPS
    DILLON, JF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A49 - A49
  • [50] THE COHERENCE NUMBER OF 2-GROUPS
    MCCOOL, J
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1990, 33 (04): : 503 - 508