ALLOY DESIGN STRATEGIES THROUGH COMPUTATIONAL THERMODYNAMICS AND KINETICS APPROACHES

被引:1
|
作者
Arroyave, Raymundo [1 ,2 ]
Li, Shengyen [2 ]
Zhu, Ruixian [2 ]
Karaman, Ibrahim [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
关键词
Alloy Design; TRIP Steels; Optimization; TRANSFORMATION-INDUCED PLASTICITY; TENSILE BEHAVIOR; RETAINED AUSTENITE; HEAT-TREATMENT; STEELS; SEGREGATION; STABILITY; AL;
D O I
10.1002/9781119090427.ch49
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, we present an example in which computational thermodynamics and kinetics can be used, in conjunction with experiments and models for predicting the mechanical response of microstructure to design alloys and processing parameters in the spirit of the Materials Genome Initiative and the Integrated Computational Materials Science and Engineering ( ICME) framework. Specifically, we describe the optimization of strength and ductility of so-called Transformation Induced Plasticity ( TRIP) steals. We show how we can use models to predict the phase constitution of complex TRIP microstructures as a function of alloying and processing. We briefly describe how we can use experiments and simple models to relate phase constitution ( amount of phases and their composition) to properties/performance. Finally, we show how we can use the established alloy/processing-microstructure-properties relations to determine alloying and processing parameters that yield optimal mechanical properties.
引用
收藏
页码:461 / 470
页数:10
相关论文
共 50 条
  • [41] Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning
    Yi, Wang
    Liu, Guangchen
    Lu, Zhao
    Gao, Jianbao
    Zhang, Lijun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 112 : 277 - 290
  • [42] Alloy Design Based on Computational Thermodynamics and Multi-objective Optimization: The Case of Medium-Mn Steels
    John S. Aristeidakis
    Gregory N. Haidemenopoulos
    Metallurgical and Materials Transactions A, 2017, 48 : 2584 - 2602
  • [43] Discovery of novel PARP1 inhibitors through computational drug design approaches
    Shamim, Md.
    Ali, Md. Sumon
    Hossain, Md. Arju
    Hossain, Md. Alfaz
    Kavey, Md. Reduanul Haque
    Hoque, Md. Mobinul
    Rahman, Md Ataur
    Harrath, Abdel Halim
    Rahman, Md Habibur
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2025, 116
  • [44] Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning
    Wang Yi
    Guangchen Liu
    Zhao Lu
    Jianbao Gao
    Lijun Zhang
    Journal of Materials Science & Technology, 2022, 112 (17) : 277 - 290
  • [45] Design of crack-free laser additive manufactured Inconel 939 alloy driven by computational thermodynamics method
    Congyuan Zeng
    Huan Ding
    Uttam Bhandari
    S. M. Guo
    MRS Communications, 2022, 12 : 844 - 849
  • [46] Application of computational tools in alloy design
    Suzuki, Akane
    Shen, Chen
    Kumar, Natarajan Chennimalai
    MRS BULLETIN, 2019, 44 (04) : 247 - 251
  • [47] Application of computational tools in alloy design
    Akane Suzuki
    Chen Shen
    Natarajan Chennimalai Kumar
    MRS Bulletin, 2019, 44 : 247 - 251
  • [48] Computational design of nanostructured steels employing irreversible thermodynamics
    Rivera-Diaz-del-Castillo, P. E. J.
    Hayashi, K.
    Galindo-Nava, E. I.
    MATERIALS SCIENCE AND TECHNOLOGY, 2013, 29 (10) : 1206 - 1211
  • [49] The role of computational thermodynamics in the design of duplex stainless steels
    Hayes, FH
    Watson, A
    CALPHAD AND ALLOY THERMODYNAMICS, 2002, : 225 - 237
  • [50] Nitridation of HAYNES® NS-163® Alloy: Thermodynamics and Kinetics
    M. Fahrmann
    S. K. Srivastava
    JOM, 2012, 64 : 280 - 284