ALLOY DESIGN STRATEGIES THROUGH COMPUTATIONAL THERMODYNAMICS AND KINETICS APPROACHES

被引:1
|
作者
Arroyave, Raymundo [1 ,2 ]
Li, Shengyen [2 ]
Zhu, Ruixian [2 ]
Karaman, Ibrahim [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
关键词
Alloy Design; TRIP Steels; Optimization; TRANSFORMATION-INDUCED PLASTICITY; TENSILE BEHAVIOR; RETAINED AUSTENITE; HEAT-TREATMENT; STEELS; SEGREGATION; STABILITY; AL;
D O I
10.1002/9781119090427.ch49
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, we present an example in which computational thermodynamics and kinetics can be used, in conjunction with experiments and models for predicting the mechanical response of microstructure to design alloys and processing parameters in the spirit of the Materials Genome Initiative and the Integrated Computational Materials Science and Engineering ( ICME) framework. Specifically, we describe the optimization of strength and ductility of so-called Transformation Induced Plasticity ( TRIP) steals. We show how we can use models to predict the phase constitution of complex TRIP microstructures as a function of alloying and processing. We briefly describe how we can use experiments and simple models to relate phase constitution ( amount of phases and their composition) to properties/performance. Finally, we show how we can use the established alloy/processing-microstructure-properties relations to determine alloying and processing parameters that yield optimal mechanical properties.
引用
收藏
页码:461 / 470
页数:10
相关论文
共 50 条
  • [1] Computational thermodynamics, computational kinetics, and materials design
    Lu, Xiao-Gang
    Wang, Zhuo
    Cui, Yuwen
    Jin, Zhanpeng
    CHINESE SCIENCE BULLETIN, 2014, 59 (15): : 1662 - 1671
  • [2] Computational thermodynamics, computational kinetics, and materials design
    XiaoGang Lu
    Zhuo Wang
    Yuwen Cui
    Zhanpeng Jin
    Chinese Science Bulletin, 2014, 59 (15) : 1662 - 1671
  • [3] COMPUTATIONAL THERMODYNAMICS AND KINETICS FOR MAGNESIUM ALLOY DEVELOPMENT
    Luo, Alan A.
    Sun, Weihua
    Zhong, Wei
    Zhao, Ji-Cheng
    ADVANCED MATERIALS & PROCESSES, 2015, 173 (01): : 26 - 30
  • [4] Genetic alloy design based on thermodynamics and kinetics
    Xu, W.
    Rivera-Diaz-del-Castillo, P. E. J.
    van der Zwaag, S.
    PHILOSOPHICAL MAGAZINE, 2008, 88 (12) : 1825 - 1833
  • [5] Computational Thermodynamics Aided High-Entropy Alloy Design
    Chuan Zhang
    Fan Zhang
    Shuanglin Chen
    Weisheng Cao
    JOM, 2012, 64 : 839 - 845
  • [6] Computational Thermodynamics Aided High-Entropy Alloy Design
    Zhang, Chuan
    Zhang, Fan
    Chen, Shuanglin
    Cao, Weisheng
    JOM, 2012, 64 (07) : 839 - 845
  • [7] PRACTICAL APPROACHES TO PROTEIN FOLDING AND ASSEMBLY: SPECTROSCOPIC STRATEGIES IN THERMODYNAMICS AND KINETICS
    Walters, Jad
    Milam, Sara L.
    Clark, A. Clay
    METHODS IN ENZYMOLOGY: BIOTHERMODYNAMICS,VOL 455, PART A, 2009, 455 : 1 - 39
  • [8] Kinetics of Ligand Binding Through Advanced Computational Approaches: A Review
    Dickson, Alex
    Tiwary, Pratyush
    Vashisth, Harish
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2017, 17 (23) : 2626 - 2641
  • [9] Thermodynamics and kinetics of monodisperse alloy nanoparticles synthesized through digestive ripening
    Lee, Dong-Kwon
    Hwang, Nong-Moon
    SCRIPTA MATERIALIA, 2009, 61 (03) : 304 - 307
  • [10] Computational thermodynamics and the kinetics of martensitic transformation
    Ghosh, G
    Olson, GB
    JOURNAL OF PHASE EQUILIBRIA, 2001, 22 (03): : 199 - 207