Stormwater Detention System Parameter Sensitivity and Uncertainty Analysis Using SWMM

被引:32
|
作者
Knighton, James [1 ]
Lennon, Edward [2 ]
Bastidas, Luis [3 ]
White, Eric [4 ]
机构
[1] Cornell Univ, Dept Biol & Environm Engn, Ithaca, NY 14853 USA
[2] Philadelphia Water Dept, 1101 Market St, Philadelphia, PA 19107 USA
[3] Enercon Serv Inc, 1501 Ardmore Blvd,Suite 200, Pittsburgh, PA 15221 USA
[4] Water Inst Gulf, One Amer Pl,301N Main St, Baton Rouge, LA 70825 USA
关键词
Storm water management model (SWMM); Stormwater wetland; Generalized likelihood uncertainty estimation (GLUE); Multiobjective generalized sensitivity analysis (MOGSA); Pennsylvania; HYDROLOGIC MODEL PARAMETERS; RAINFALL-RUNOFF MODEL; INFORMATION-CONTENT; GLUE METHODOLOGY; CALIBRATION; TRANSPIRATION; COMPRESSION; INCOHERENCE; WETLAND;
D O I
10.1061/(ASCE)HE.1943-5584.0001382
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A U.S. EPA (EPA) model was developed for the Cathedral Run stormwater wetland (Philadelphia, Pennsylvania). This research presents a formal sensitivity analysis of hydraulic and hydrologic model parameters contributing uncertainty with the multiobjective generalized sensitivity analysis (MOGSA) algorithm. The parameters identified as significant include: percent routed (PR), subcatchment soils, subcatchment width, wetland soils, and the flood weir coefficient. These results suggest that this model is well parameterized for detailed simulations of stormwater control installations, and contests the existence of a globally sensitive set of parameters. This research demonstrates that detailed models of stormwater control installations are significantly affected by uncertainty related to parameters beyond traditional calibration (i.e.,runoff generation) parameters. The authors present a monitoring design based on wetland water surface elevation. The simplified monitoring scheme obtained statistically significant calibration data as determined through MOGSA. The generalized likelihood uncertainty estimation (GLUE) algorithm was then applied to develop marginal posterior model parameter distributions and two-dimensional (2D) probability spaces using a formal Bayesian likelihood function. The GLUE results demonstrate the importance of uncertainty and equifinality within the context of stormwater wetland modeling.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Modeling Denitrifying Stormwater Biofilters Using SWMM5
    Lynn, Thomas J.
    Nachabe, Mahmood H.
    Ergas, Sarina J.
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2017, 143 (07)
  • [22] Sensitivity analysis for a thermohydrodynamic model: Uncertainty analysis and parameter estimation
    Fiorini, Camilla
    Puscas, Maria Adela
    Despres, Bruno
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2024, 105 (25-33) : 25 - 33
  • [23] A Global Sensitivity Analysis of Parameter Uncertainty in the CLASSIC Model
    Deepak, Raj S. N.
    Seiler, Christian
    Monahan, Adam H.
    ATMOSPHERE-OCEAN, 2024, 62 (05) : 347 - 359
  • [24] A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT
    Abbas, Salam A.
    Bailey, Ryan T.
    White, Jeremy T.
    Arnold, Jeffrey G.
    White, Michael J.
    Cerkasova, Natalja
    Gao, Jungang
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2024, 28 (01) : 21 - 48
  • [25] Urban stormwater quality Control analysis with detention ponds
    Chen, Jieyun
    Adams, Barry J.
    WATER ENVIRONMENT RESEARCH, 2006, 78 (07) : 744 - 753
  • [26] Probabilistic analysis of the retention time in stormwater detention facilities
    Becciu, Gianfranco
    Raimondi, Anita
    COMPUTING AND CONTROL FOR THE WATER INDUSTRY (CCWI2015): SHARING THE BEST PRACTICE IN WATER MANAGEMENT, 2015, 119 : 1299 - 1307
  • [27] Fast eutrophication assessment for stormwater wet detention ponds via fuzzy probit regression analysis under uncertainty
    Tahsin, Subrina
    Chang, Ni-Bin
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2016, 188 (02) : 1 - 18
  • [28] Fast eutrophication assessment for stormwater wet detention ponds via fuzzy probit regression analysis under uncertainty
    Subrina Tahsin
    Ni-Bin Chang
    Environmental Monitoring and Assessment, 2016, 188
  • [29] PARAMETER SENSITIVITY AND UNCERTAINTY OF RADIATION INTERCEPTION MODELS FOR INTERCROPPING SYSTEM
    Zeng, Wenzhi
    Lu, Yuchao
    Srivastava, Amit Kumar
    Gaiser, Thomas
    Huang, Jiesheng
    ECOLOGICAL CHEMISTRY AND ENGINEERING S-CHEMIA I INZYNIERIA EKOLOGICZNA S, 2020, 27 (03): : 437 - 456
  • [30] Using stormwater detention tanks as storage system for sustainable energy management in a smart city framework
    Menniti, D.
    Pinnarelli, A.
    Sorrentino, N.
    Beli, G.
    Barone, G.
    2015 AEIT INTERNATIONAL ANNUAL CONFERENCE (AEIT), 2015,