On the almost monotone convergence of sequences of continuous functions
被引:0
|
作者:
Grande, Zbigniew
论文数: 0引用数: 0
h-index: 0
机构:
Casimirus Great Univ, Inst Math, Bydgoszcz, PolandCasimirus Great Univ, Inst Math, Bydgoszcz, Poland
Grande, Zbigniew
[1
]
机构:
[1] Casimirus Great Univ, Inst Math, Bydgoszcz, Poland
来源:
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS
|
2011年
/
9卷
/
04期
关键词:
Almost monotone convergence;
Continuity;
Baire;
1;
class;
Upper semicontinuity;
Lower semicontinuity;
Approximate continuity;
APPROXIMATELY CONTINUOUS-FUNCTIONS;
BAIRE CLASSES;
DISCRETE;
LIMITS;
D O I:
10.2478/s11533-011-0030-2
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
A sequence (f (n) ) (n) of functions f (n) : X -> a"e almost decreases (increases) to a function f: X -> a"e if it pointwise converges to f and for each point x a X there is a positive integer n(x) such that f (n+1)(x) a parts per thousand currency sign f (n) (x) (f (n+1)(x) a parts per thousand yen f (n) (x)) for n a parts per thousand yen n(x). In this article I investigate this convergence in some families of continuous functions.