Research on Rotating Machinery Vibration Fault Based on Support Vector Machine

被引:0
|
作者
Zhang, Chao [1 ]
Liu, Deqing [1 ]
机构
[1] N China Elect Power Univ, Dept Mech Engn, Baoding 071003, Hebei, Peoples R China
关键词
Support vector machine; Rotating machinery; Vibration fault; K-L transform;
D O I
10.4028/www.scientific.net/AMR.139-141.2603
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The research on support vector machine in fault diagnose has already obtained a lot of breakthroughs, such as the mode identify problems in small sample, nonlinearity, high dimension and so on. However, there are some limitations in the traditional support vector machine. In this paper, in allusion to the current rotating machinery fault diagnosis problem, the basic principles of support vector machine are studied. According to the complex characteristics of rotating machinery vibration fault, a fault extraction method is proposed based on the K-L transform. Multi-classification algorithm of support vector machine is improved, and the algorithm is used to analyze the rotating machinery vibration. By using its capabilities of model identification and system modeling, the initial symptom, occurrence, development of the typical faults are dynamically analyzed. These provide new ideas and methods for fault diagnosis of rotating machinery.
引用
收藏
页码:2603 / 2607
页数:5
相关论文
共 50 条
  • [11] Rubbing Fault Diagnosis of Rotary Machinery Based on Wavelet and Support Vector Machine
    Jin Zhihao
    Ji Shangwei
    Jin Wen
    Wen Bangchun
    FIRST INTERNATIONAL WORKSHOP ON DATABASE TECHNOLOGY AND APPLICATIONS, PROCEEDINGS, 2009, : 287 - +
  • [12] Fault diagnosis of rotating machinery based on multi-class support vector machines
    Yang, BS
    Han, T
    Hwang, WW
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2005, 19 (03) : 846 - 859
  • [13] Fault diagnosis of rotating machinery based on multi-class support vector machines
    Bo-Suk Yang
    Tian Han
    Won-Woo Hwang
    Journal of Mechanical Science and Technology, 2005, 19 : 846 - 859
  • [14] Fault classification of rotor vibration signal based on support vector machine
    Shanghai Institute of Special Equipment Inspection and Technical Research, Shanghai 200062, China
    不详
    Zhendong Gongcheng Xuebao, 2006, 2 (238-241):
  • [15] Rotor vibration fault fusion diagnosis based on support vector machine
    Ai, Yan-Ting
    Fei, Cheng-Wei
    Shenyang Gongye Daxue Xuebao/Journal of Shenyang University of Technology, 2010, 32 (05): : 526 - 530
  • [16] Research on Fault Diagnosis of PCCP Based on Support Vector Machine
    Yang, Chunting
    Liu, Yang
    PROGRESS IN MEASUREMENT AND TESTING, PTS 1 AND 2, 2010, 108-111 : 409 - 414
  • [17] Research status of fault diagnosis based on support vector machine
    Liu Limei
    Wang Jianwen
    Guo Ying
    Lin Hongsheng
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 787 - 791
  • [18] Research on vibration monitoring and fault diagnosis of rotating machinery based on internet of things technology
    Zhang, Xiaoran
    Rane, Kantilal Pitambar
    Kakaravada, Ismail
    Shabaz, Mohammad
    NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2021, 10 (01): : 245 - 254
  • [19] Multiple Fault Classification Using Support Vector Machine in a Machinery Fault Simulator
    Fatima, S.
    Mohanty, A. R.
    Naikan, V. N. A.
    VIBRATION ENGINEERING AND TECHNOLOGY OF MACHINERY, 2015, 23 : 1021 - 1031
  • [20] Fault diagnosis of rotating machine by thermography method on support vector machine
    Gang-Min Lim
    Dong-Myung Bae
    Joo-Hyung Kim
    Journal of Mechanical Science and Technology, 2014, 28 : 2947 - 2952